

INNOVACIÓN Y SOSTENIBILIDAD EN PALMA DE ACEITE

Nutriendo Personas y Protegiendo el Planeta

26, 27 y 28 de septiembre de 2018 Centro de Convenciones Cartagena de Indias, Colombia





### Artificial Intelligence Methods for Oil Palm Remote Sensing Applications

Presented by:

Dr. Helmi Zulhaidi Mohd Shafri Universiti Putra Malaysia (UPM)

Cartagena, Colombia 26-28 September 2018

### **Outline**

- ☐ Introduction
- ☐ Industrial Revolution 4.0
- ☐ AI & Machine learning
- □ Remote sensing

- ☐ Case Studies
  - Field spectroscopy
  - Airborne
  - Spaceborne
- ☐ Conclusions and Future Outlook





## Introduction

- Era of Industrial Revolution 4.0 (IR4.0) and Agriculture 4.0
- Precision agriculture and automation
- Remote sensing as an integral technology to provide data and images.
- Artificial intelligence (AI) is a branch of computer science that aims to create intelligent machines/systems. It has become an essential part of the technology industry.
- Machine Learning (ML) is one of the core areas of AI provides the brain to the AI (via algorithms).
- Al is blending with remote sensing imagery in different industries to improve efficiency and open new possibilities.
- ML enables computers to learn from data to automatically recognize objects, cluster an image by similarity or classify, among others.
- Al and ML capabilities are embedded inside applications and provide users with functionality such as automation or predictive capabilities
- Al and ML in plantation management using remote sensing will be the focus of this session.







#1 Artificial Intelligence Al /Machine Learning / Deep Learning



#6 Automation Information, Task, Process, Machine, Decision & Action



#11 3D Printing Additive Manufacturing & Rapid Prototyping



#11 Nanotechnology Computing, Medicine, Machines + Smart Dust



#21 Advanced Materials Composites, Alloys, Polymers, Biomimicry, Nanomanufacturing



#26 Smart Cities + Infrastructure & Transport



#2 Internet of Things IOT, IIOT, Sensors & Wearables

#7 Robots

Cons.,/Comm./Indus., Robots,

**Drones & Autonomous Vehicles** 

#12 CX

Commerce & Personalization

#17 Collaborative Tech.

Crowd, Sharing, Workplace &

#22 New Touch Interfaces

Touch Screens, Haptics, 3D Touch,

Paper, Feedback & Exoskeletons

#27 Edge/Computing

+ Fog Computing



#3 Mobile/Social Internet Advancements - Search/Social/ Messenging/Livestreams



#8 Immersive Media - #VR/ #AR/ #MR/ 360°/ Video?Gaming



#13 EnergyTech Customer Journey, Experience Efficiency, Energy Storage & Decentralized Grid



#18 Health Tech. #19 Human-Computer Interaction Advanced Genomics, Open Source Platforms & Tools Bionics & Health Care Tech.



#24 Clean Tech. #23 Wireless Power Bio-/Enviro-Materials + Solutions, Sustainability, Treatment & Efficiency

(((e))) #28 Faster, Better Internet Broadband incl. Fiber, 5G, Li-Fi, LPN and LoRa

#29 Proximity Tech Beacons, .RFID, Wi-Fi, Near-Field Communications & Geofencing

#4 Blockchain

Distributed Ledger Systems,

Cryptocurrencies & DApps

#9 Mobile Technologies

Infrastructure, networks,

standards, services & devices

#14 Cybersecurity

Security, Intelligence Detection,

Remediation & Adaptation

Facial/Gesture Recognition,

Biometrics, Gaze Tracking



#5 Big Data

0101 1011 0110

#10 Cloud Computing, SaaS, IaaS, PaaS & MESH Apps



#15 Voice Assistants Interfaces, Chatbots & Natural Language Processing



#20 Geo-spatial Tech. GIS, GPS, Mapping & Remote Sensing, Scanning, Navigation



#25 Quantum Computing + Exascale Computing



#30 New Screens TVs, Digital Signage, OOH, MicroLEDS & Projections

### THE 30 TECHNOLOGIES OF THE NEXT DEC



Created by: Sean Moffitt @seanmoffitt, Managing Director, @Wikibrands









#### INDUSTRIAL REVOLUTION



The industrial revolution begins. Mechanization of manufacturing with the introduction of steam and water power

1st Revolution



Mass production assembly lines using electrical power

2nd Revolution



Automated production using electronics, programmable logic controllers (PLC), IT systems and robotics

> 3rd Revolution



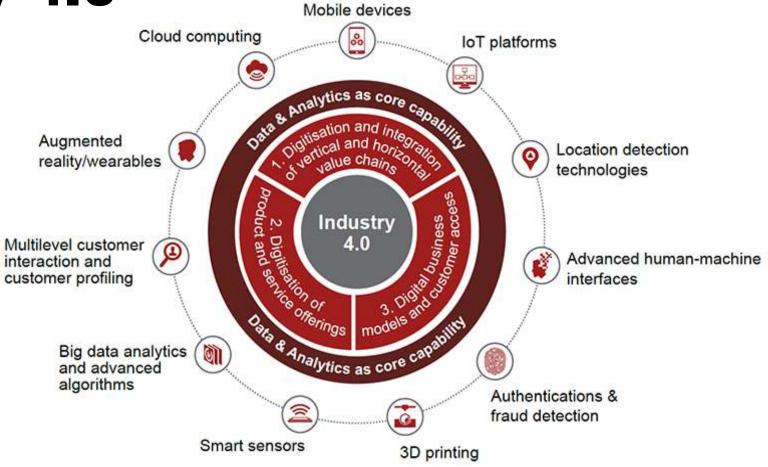
Autonomous decision making of cyber physical systems using machine learning through cloud technology

> 4th Revolution



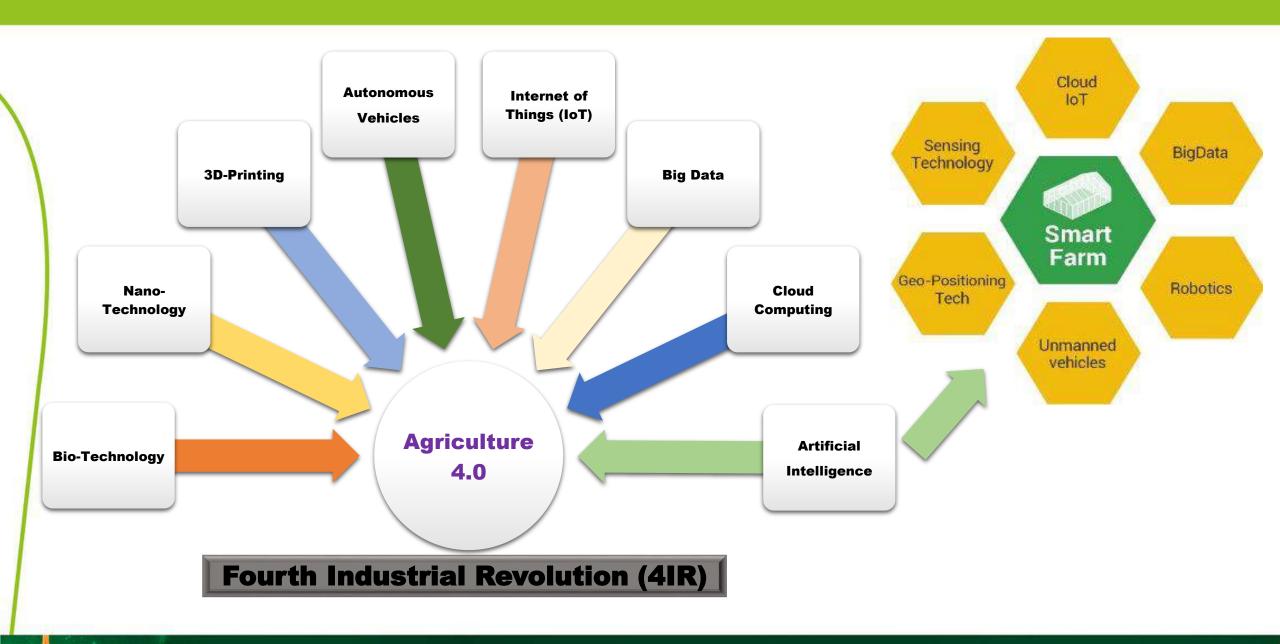


# **Industry 4.0**









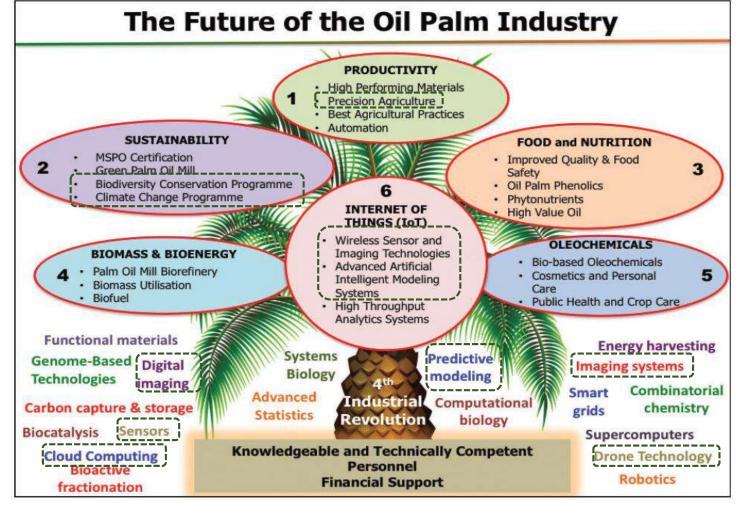






# **Transformative Technologies**

Transformative technologies are crucial for the oil palm industry to remain viable and sustainable Among others include RS, cloud computing, advanced algorithms, big data etc.



\_\_\_\_\_

Associated with Remote Sensing Technology

Source: Kushairi et al, 2017





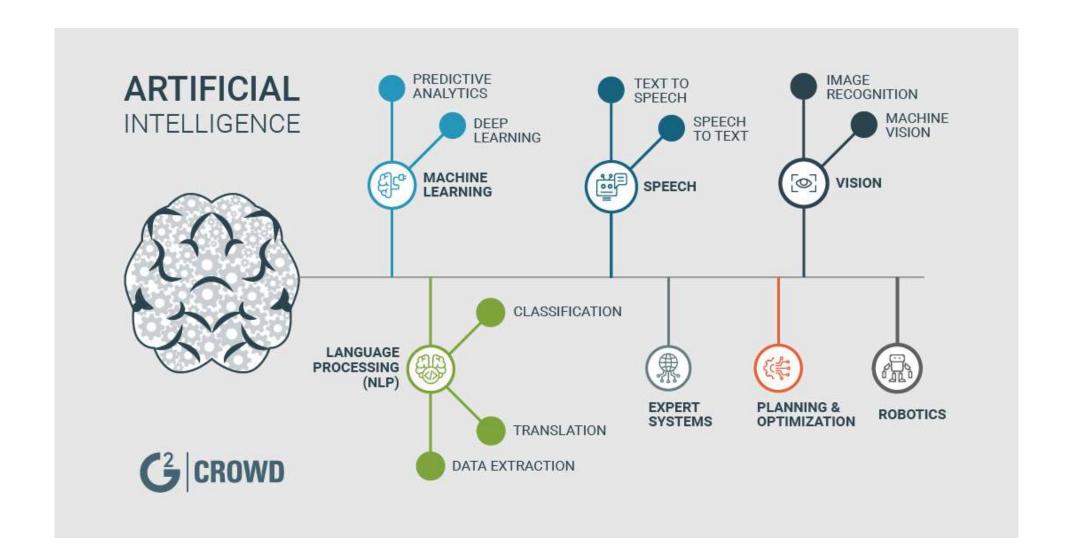


#### **Artificial Intelligence - The Brain behind Industry 4.0**



ML is the brain behind Al



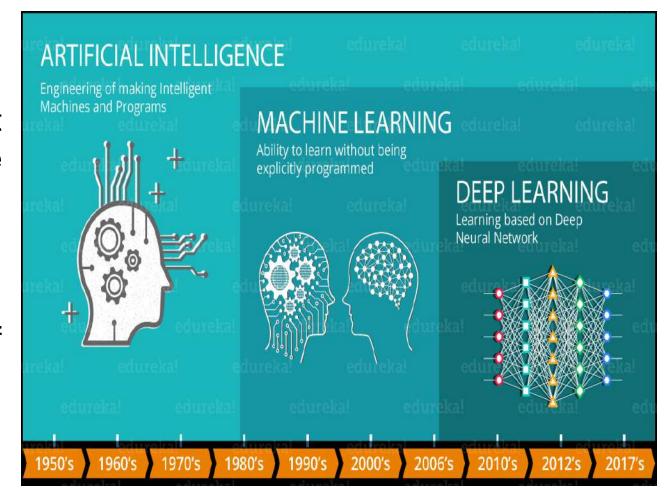






#### Al and ML

- Al involves machines/software that can perform tasks that are characterise of human intelligence.
- Al was catalyzed by breakthroughs in an area known as machine learning.
- Machine learning is simply a way of achieving AI.



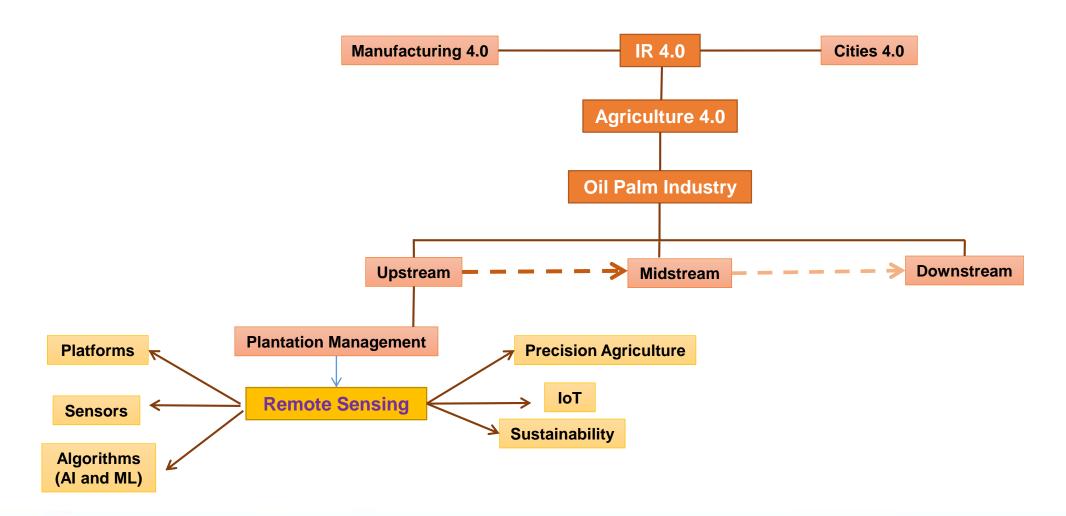




# Data-Driven Agriculture Ag researchers have shown that data-driven agriculture: Ensures Sustainability





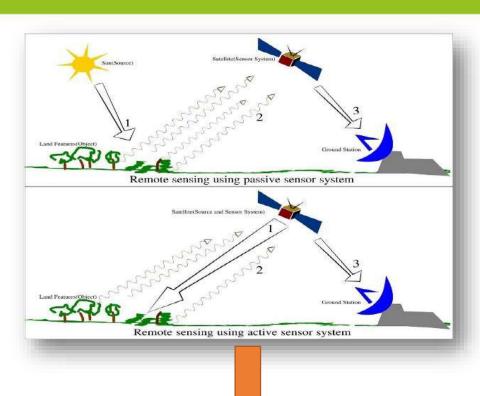


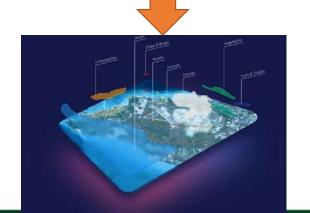




# **Remote Sensing**

- Remote sensing is generally defined as the technology of measuring the characteristics of an object or surface from a distance.
- Divided into active and passive systems.
- Active Lidar, Radar
- Passive Multispectral, Hyperspectral

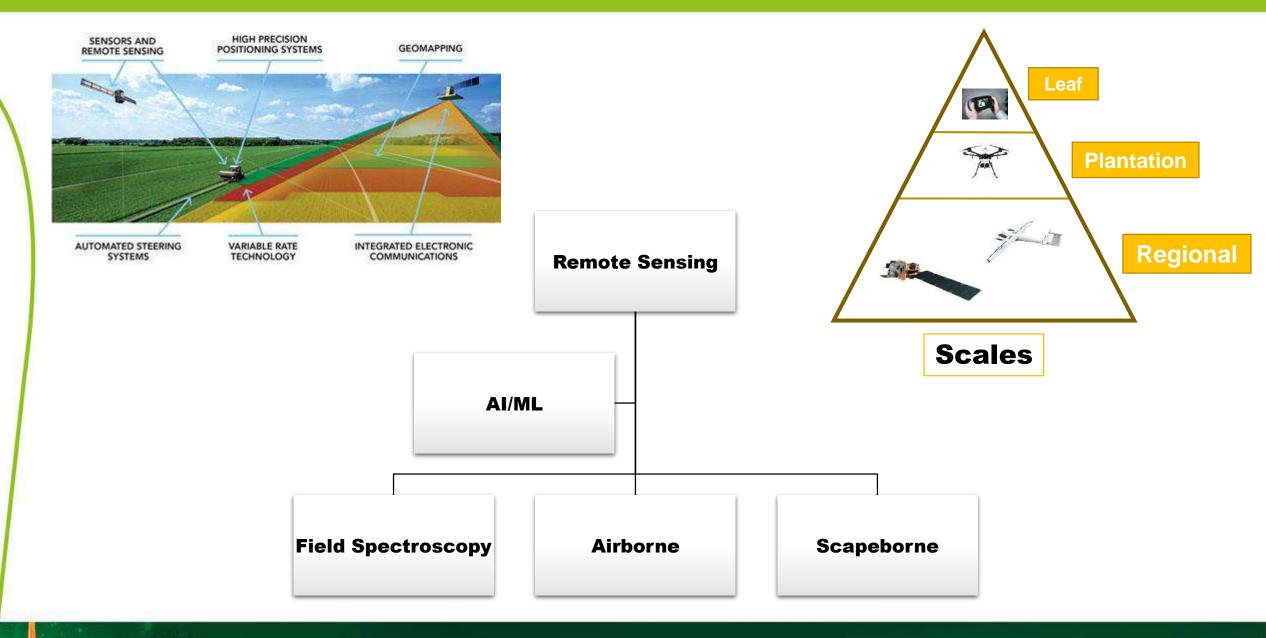
















#### **Machine Learning in Remote Sensing**

#### What is Machine Learning?

- ☐ Machine learning is a subdivision of Artificial Intelligence (AI) and also covers data mining/classification approaches.
- ☐ These algorithms do not assume specific class distributions and well suited for complex environments or approaches using fused data sets.

- □ Example of machine learning algorithms that have been widely utilized in remote sensing applications:
  - Random Forest (RF)
  - Support Vector machines (SVM)
  - Artificial Neural Network (ANN)







#### MACHINE LEARNING



UNSUPERVISED LEARNING

#### CLASSIFICATION

Support Vector Machines

Discriminant Analysis

Naive Bayes

Nearest Neighbor

Neural Networks

#### REGRESSION

Linear Regression, GLM

SVR, GPR

Ensemble Methods

**Decision Trees** 

Neural Networks

#### CLUSTERING

K-Means, K-Medoids Fuzzy C-Means

Hierarchical

Gaussian Mixture

Hidden Markov Model

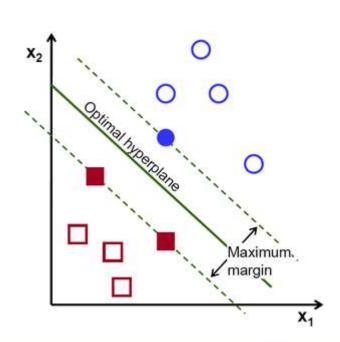
Neural Networks

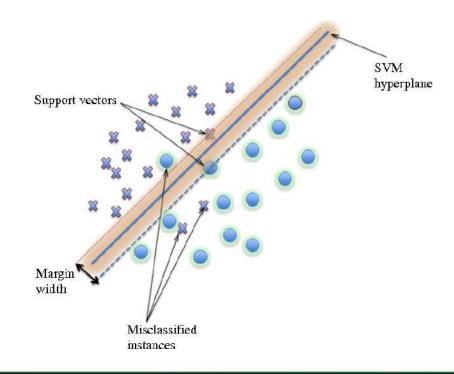




# **Support Vector Machine (SVM)**

 supervised learning models with associated learning algorithms that analyze data used for classification and regression.

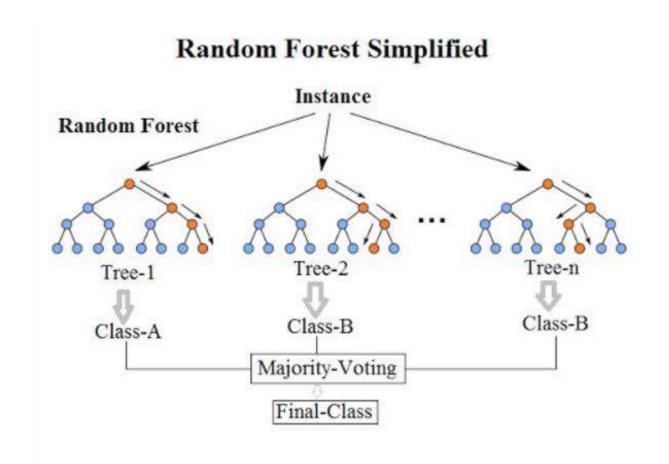






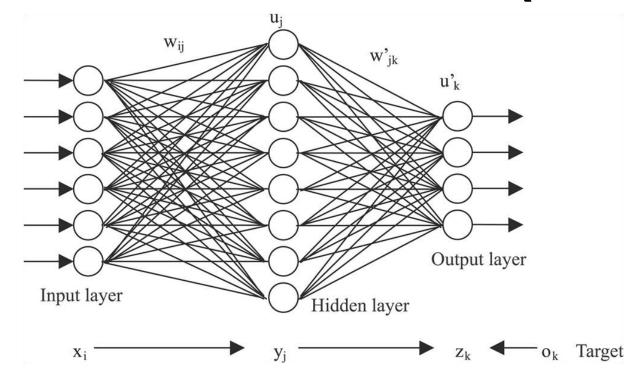


### **Random Forest**





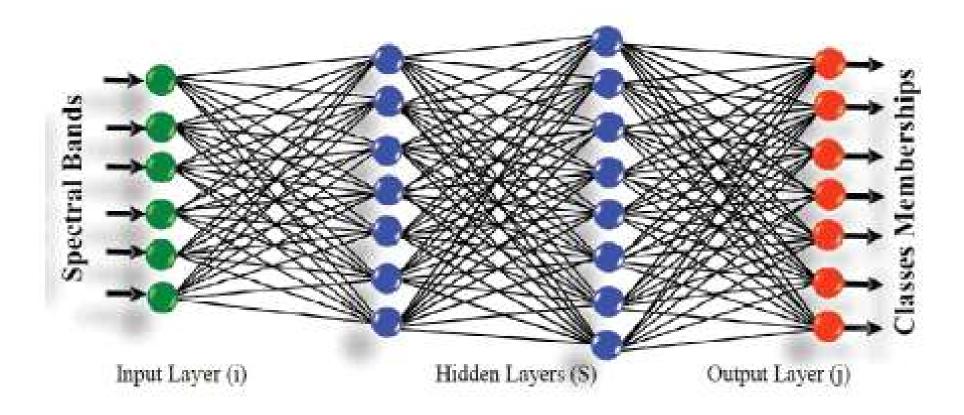
# **Artificial Neural Network (ANN)**







# **Deep Learning (DL)**







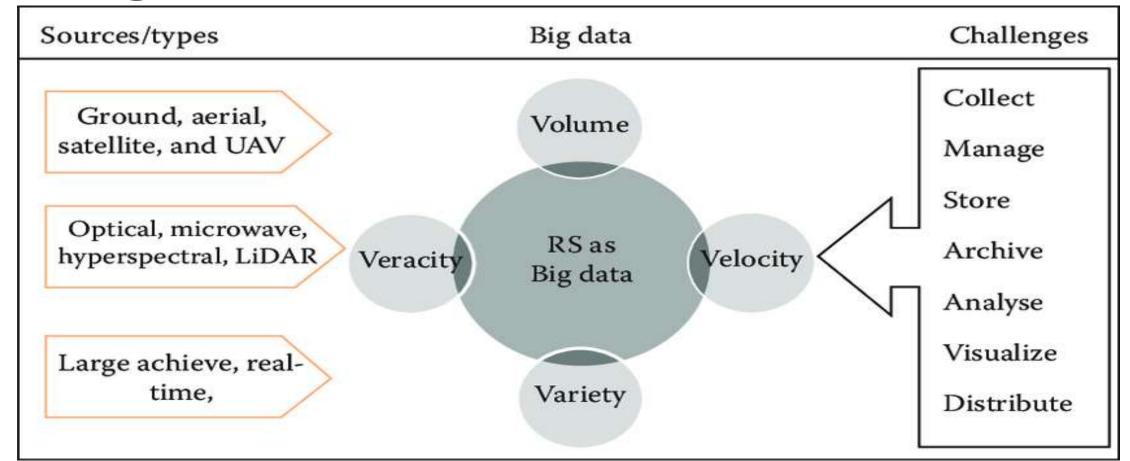
### **ML + Big Data + Cloud Computing**

**Machine Learning** is an approach to make algorithms "smarter" as they "learn" from more examples. That's one of the reasons why **Big Data and AI** seem to be evolving together. Cloud computing enables an infrastructure for big data storage and analysis more effectively.





# **RS Big Data**

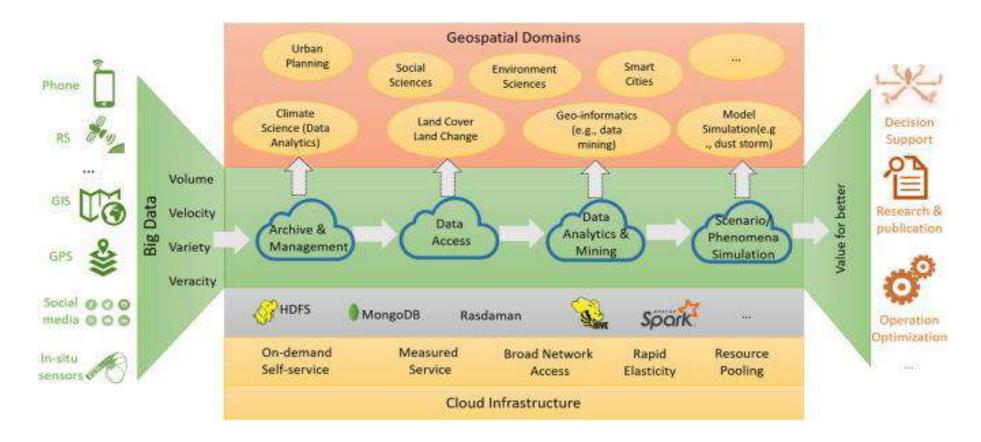








# **Cloud Computing**



Source: https://www.sciencedirect.com/science/article/pii/S0198971516303106







#### **CASE STUDIES**

- Field/Lab Spectroscopy
- Airborne
- Satellite

#### **ANALYZING SATELLITE IMAGES** ASSESSING CROP/SOIL HEALTH **IN-FIELD MONITORING** This category includes drone manufactures with a focus on agriculture, as well as startups Use machine learning to predict the effect Use machine learning and computer vision working on computer vision algorithms to algorithms to classify data and extract of various microbes on plant health and process the data captured by drones and meaningful information from millions of satellite identify genetic mutations in pathogens images. Geo-spatial data can provide information that may be harmful for the plant, among on crop distribution patterns across the globe other things. and the impact of weather changes on agriculture. PREDICTIVE ANALYTICS AGRICULTURAL ROBOTS

Use machine learning models for agricultural

R&D, seasonal analysis, modeling different

market scenarios, and optimizing business costs, among other applications.

**CBINSIGHTS** 



This category includes ground robots that perform various agricultural tasks.





# Field Spectroscopy

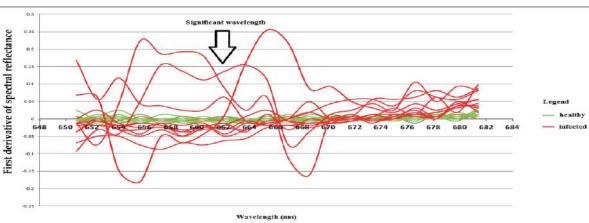
- Important to study the fundamental response towards disease severity and nutrient deficiency.
- Also for the development of spectral library.
- Studies have indicated some success (Shafri et al., 2011; Liaghat et al., 2014; Izzuddin et al., 2017; Ahmadi et al., 2017) but further improvements are needed.

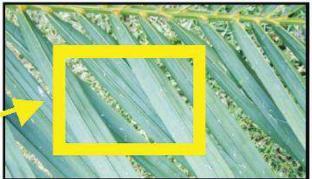












Spectral measurement on leaves (yellow box)



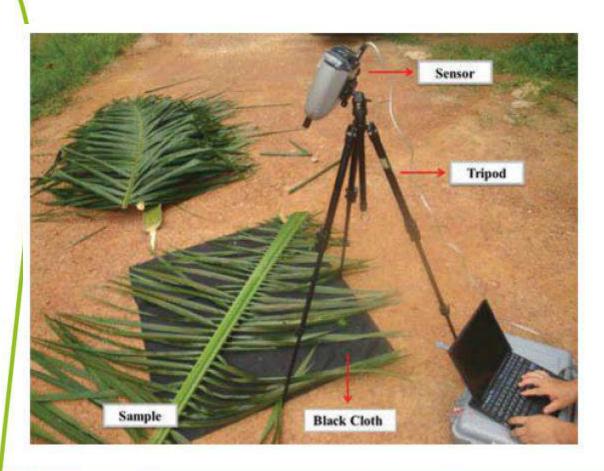
Source: (Izzuddin et al., 2013)

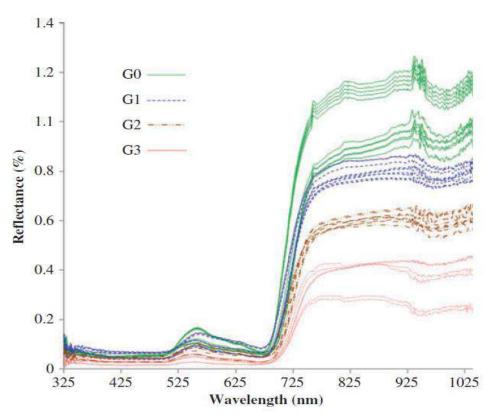






### ML on field data





Healthy (G0) and Ganoderma-infected (G1, G2,



- Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), vs k-nearest neighbour (kNN), and Naïve–Bayes (NB) ML classifiers
- Analysis of variance (ANOVA) with a 5% level of significance ( $\alpha$  = 0.05) was performed to study the effect of different classification models (LDA, QDA, kNN, and NB) and different datasets (raw, first, and second derivatives) on classification accuracies
- Overall accuracy rate of 97% (without false-negatives) when the kNNbased classification model was used





Table 2. Average overall and individual class classification accuracies obtained from preprocessed data sets using LDA-, QDA-, kNN-, and NB-based models.

|          |            | Average classification accuracies (%) |      |      |      |      |                  |        |
|----------|------------|---------------------------------------|------|------|------|------|------------------|--------|
|          | No. of PCs | Overall                               | G0   | G1   | G2   | G3   | $\boldsymbol{k}$ | SD (%) |
| LDA      |            |                                       |      |      |      |      |                  | 3.5    |
| Raw      | 6          | 95.6                                  | 96.8 | 95.5 | 96.9 | 94.8 |                  | 0.9    |
| First D  | 15         | 93.1                                  | 96.8 | 89.6 | 93.7 | 92.6 |                  | 2.6    |
| Second D | 23         | 89.3                                  | 86.4 | 90.9 | 87.0 | 93.1 |                  | 2.8    |
| QDA      |            |                                       |      |      |      |      |                  | 8.5    |
| Raw      | 6          | 85.0                                  | 86.3 | 84.9 | 83.9 | 83.5 |                  | 1.1    |
| First D  | 15         | 92.3                                  | 96.9 | 91.0 | 93.6 | 87.1 |                  | 3.6    |
| Second D | 23         | 86.8                                  | 98.5 | 95.5 | 87.4 | 62.6 |                  | 14.1   |
| kNN      |            |                                       |      |      |      |      |                  | 5.6    |
| Raw      | 6          | 86.5                                  | 84.5 | 91.2 | 88.7 | 81.2 | 1, 2             | 3.8    |
| First D  | 15         | 96.4                                  | 96.8 | 97.1 | 95.3 | 96.8 | 1, 2             | 0.7    |
| Second D | 23         | 97.3                                  | 98.5 | 95.6 | 96.9 | 98.5 | 1, 2             | 1.2    |
| NB       |            |                                       |      |      |      |      |                  | 10.5   |
| Raw      | 6          | 96.0                                  | 96.9 | 98.5 | 91.9 | 96.6 |                  | 2.5    |
| First D  | 15         | 83.5                                  | 84.2 | 94.0 | 81.1 | 71.4 |                  | 8.1    |
| Second D | 23         | 78.9                                  | 76.5 | 91.0 | 82.1 | 62.7 |                  | 10.3   |

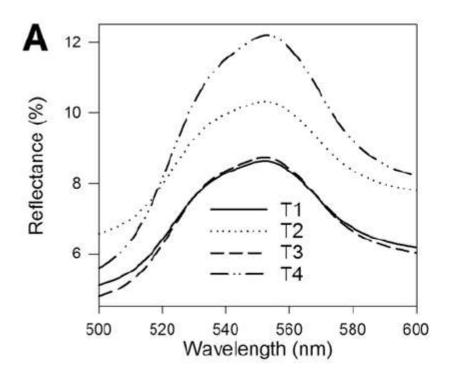
Note: D - derivative: SD - standard deviation.

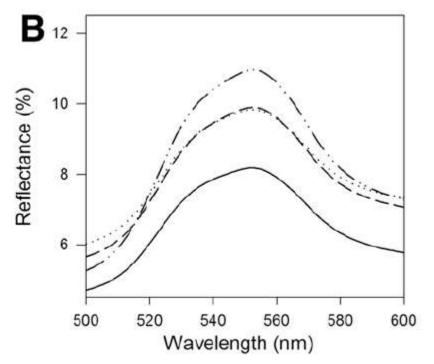




 Ahmadi et al (2017) used ANN to investigate the hyperspectral capability to discriminate severity levels

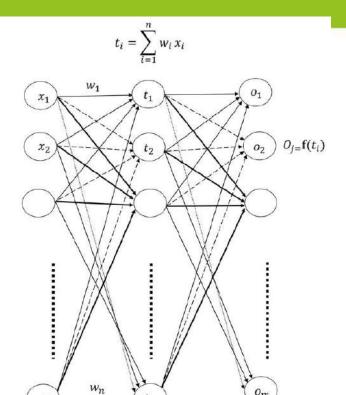
| Severity level | Symptoms                                                   |  |  |  |
|----------------|------------------------------------------------------------|--|--|--|
| T1 (healthy)   | Negative GSMa test                                         |  |  |  |
|                | Healthy leaves and normal palm canopy                      |  |  |  |
| T2 (mild)      | Positive GSM test                                          |  |  |  |
|                | Presence of mycelium in the stem bark, or brittle wood     |  |  |  |
|                | Healthy leaves and normal palm canopy                      |  |  |  |
| T3 (moderate)  | Positive GSM test                                          |  |  |  |
|                | Presence of mycelium in the stem bark, and fruiting body   |  |  |  |
|                | Less than 50% foliar symptoms                              |  |  |  |
| T4 (severe)    | Presence of fruiting body at the bottom of the rotten stem |  |  |  |
|                | More than 50% foliar symptoms                              |  |  |  |











Discrimination accuracy<sup>a</sup> (%)

Output Layer

|         |                  | Frond 9      |                      |         | Frond 17     |                      |         |  |
|---------|------------------|--------------|----------------------|---------|--------------|----------------------|---------|--|
| Dataset | Wavelengths (nm) | Healthy (T1) | Mildly infected (T2) | Overall | Healthy (T1) | Mildly infected (T2) | Overall |  |
| RAW     | 553, 557, 562    | 100.0        | 100.0                | 100.0   | 80.0         | 85.0                 | 82.8    |  |
| RAW     | 550 to 560       | 66.7         | 100.0                | 83.3    | 66.7         | 100.0                | 83.3    |  |
| FDR     | 550 to 560       | 100.0        | 100.0                | 100.0   | 100.0        | 66.7                 | 83.3    |  |
| SDR     | 540 to 550       | 66.7         | 66.7                 | 66.7    | 100.0        | 100.0                | 100.0   |  |

Hidden layer

Input Layer

<sup>&</sup>lt;sup>a</sup> The accuracies were derived for 46 spectral leaf measurements of T1 and 46 spectral leaf measurements of T2 for each frond number.

#### Airborne/UAV RS

- Acquired data using piloted aircraft and UAV for oil palm plantation analysis.
- Previous campaigns were flown using AISA sensors
- Utilised spectral indices developed from field studies.
- Current research going towards UAV utilisation due to piloted aircraft limitations (cost, maintenance, schedule etc).





# **Data Acquisition and Equipment**



Piloted aircraft with AISA sensor





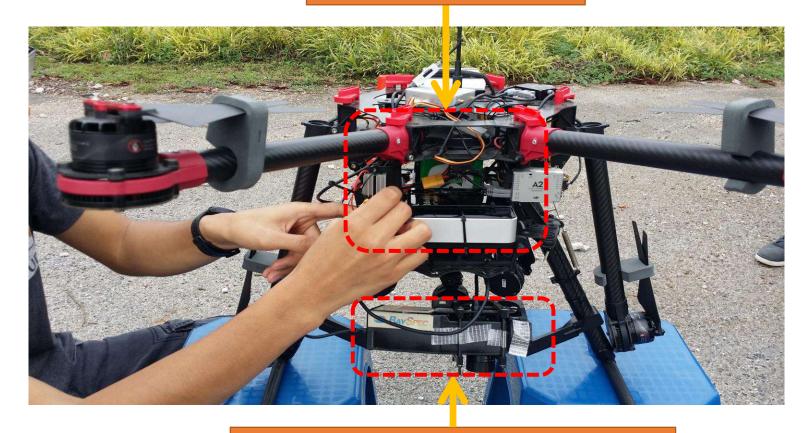




Hexacopter UAV

UAV with OCI hyperspectral sensor

#### On-board Computer

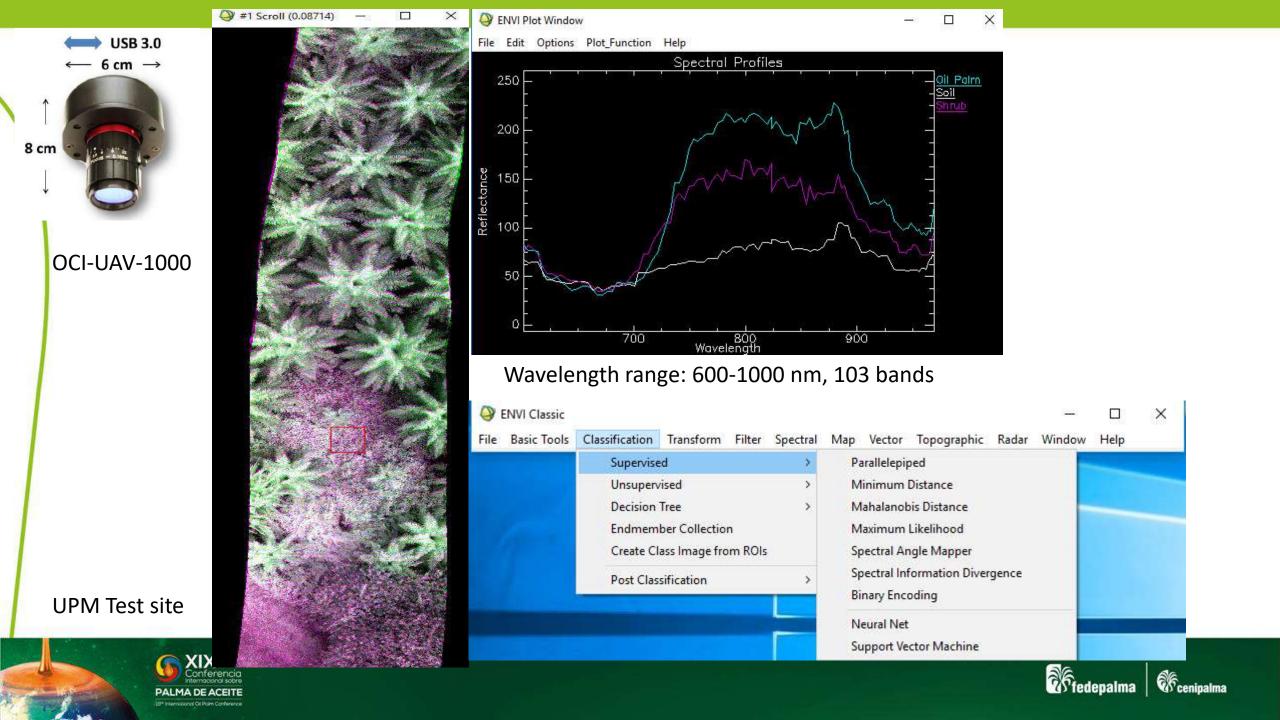


Bayspec Hyperspectral OCI UAV



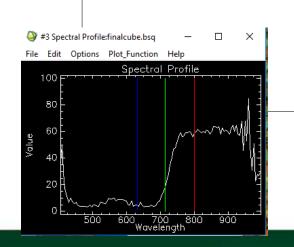






# Challenges with UAV-based hyperspectral systems

- Risk
- Complexity of device integration
- Stability of platform
- Data distortion
- Data processing complexity



Bayspec OCI-F-1000





## **Multispectral UAV**

- Model:-
  - MicaSense RedEdge
- ☐ Benefits:-
  - Easier to handle
  - Cheaper
  - 5 bands

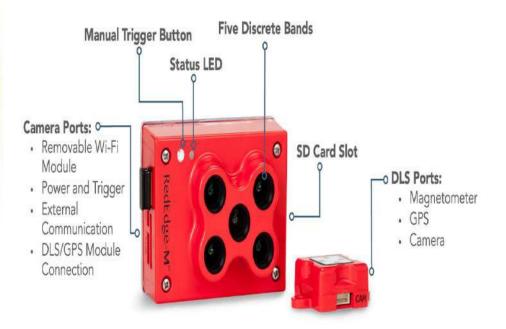








#### RedEdge-M™



#### Specifications

| Weight:                       | 170 grams (6 oz)<br>(includes DLS and cables)                                                                  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Dimensions:                   | 9.4 cm x 6.3 cm x 4.6 cm<br>(3.7 in x 2.5 in x 1.8 in)                                                         |  |
| External Power:               | 4.2 V DC - 15.6 V DC<br>4 W nominal, 8 W peak                                                                  |  |
| Spectral Bands:               | Blue, green, red, red edge, near-IR (global shutter, narrowband)                                               |  |
| RGB Color Output:             | Global shutter, aligned with all bands                                                                         |  |
| Ground Sample Distance (GSD): | 8 cm per pixel (per band) at 120 m (~400 ft) AGL                                                               |  |
| Capture Rate:                 | 1 capture per second (all bands), 12-bit RAW                                                                   |  |
| Interfaces:                   | Serial, 10/100/1000 ethernet, removable Wi-Fi, external trigger, GPS, SDHC                                     |  |
| Field of View:                | 47.2° HFOV                                                                                                     |  |
| Triggering Options:           | Timer mode, overlap mode, external trigger mode (PWM, GPIO, serial, and Ethernet options), manual capture mode |  |







## **Near Real-time Data Analysis**





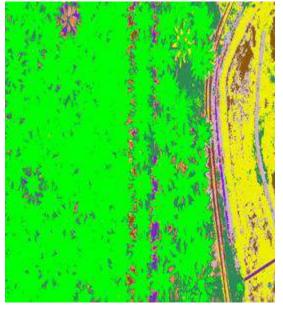


### **ML Application for UAV Data Analysis**

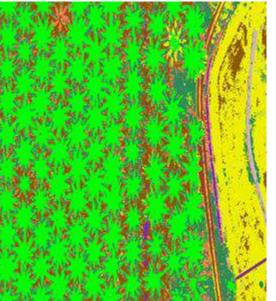
Classification of plantation land cover (1st level):- Original 5 bands



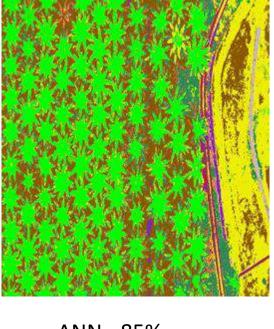
Original image



Maximum Likelihood – 85%



SVM - 89%



ANN- 85%







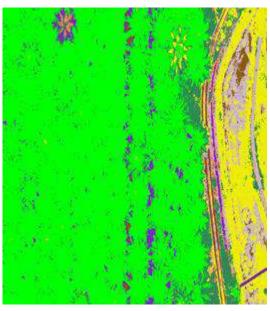


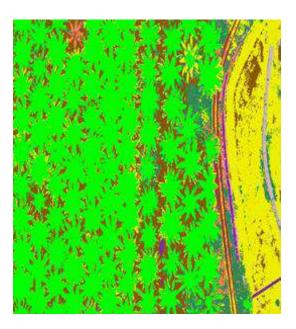




# Using the Normalized Difference Red Edge Index (NDRE) and ML









**NDRE** 

Maximum Likelihood – 83%

SVM- 90%

ANN-86%







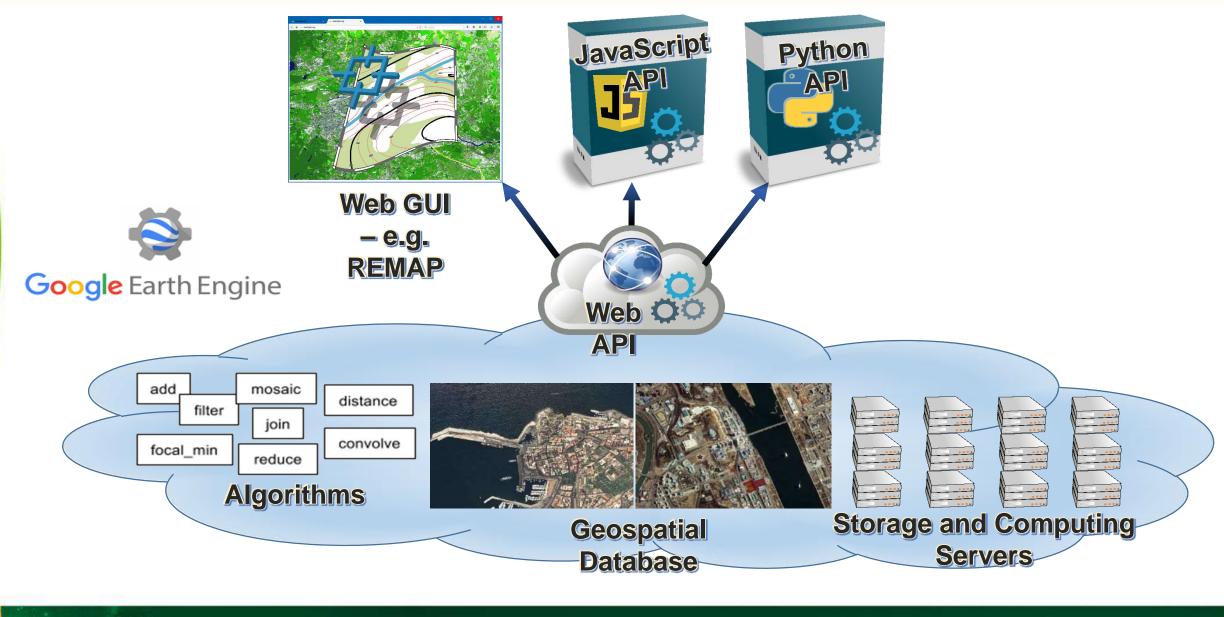
# Spaceborne (Satellite)

- ➤ Issues such as biodiversity loss, deforestation, protection of high conservation value areas.
- Satellite remote sensing plays an important role in monitoring oil palm plantations.
- > Traditional methods require storage of huge amount of data and in-house processing capabilities.
- ➤ Recent trend has been to perform image processing using cloud computing such as Google Earth Engine (GEE).
- ➤ The advantages of cloud computing include the availability of a large volume of satellite data already stored in the cloud. This will avoid the need of an external hard disk and facilitate easy data access.
- ➤ Using parallel computing, users will have unlimited computer processing capabilities.

  Moreover, code and classification algorithms can be shared and discussed in the shared platform.





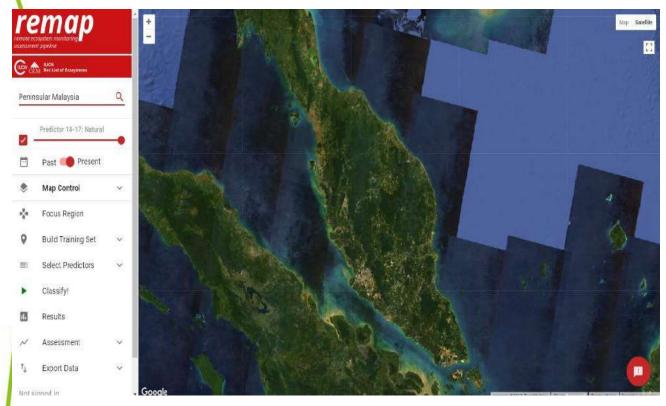








# REMAP (Remote Ecosystem Assessment & Monitoring Pipeline)



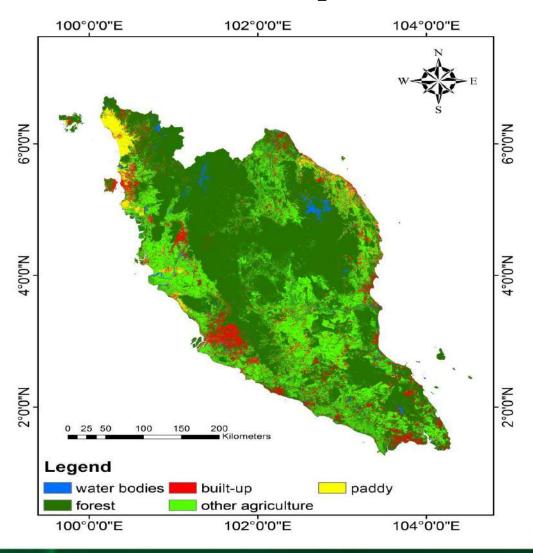
- -A free online mapmaking tool that allows users to detect environmental change over time using satellite images.
- -National level cloud computing with REMAP powered by Google Earth Engine.
- -Years of desktop computing = Days of cloud computing







#### **Land Cover Map Generated by REMAP 2017**



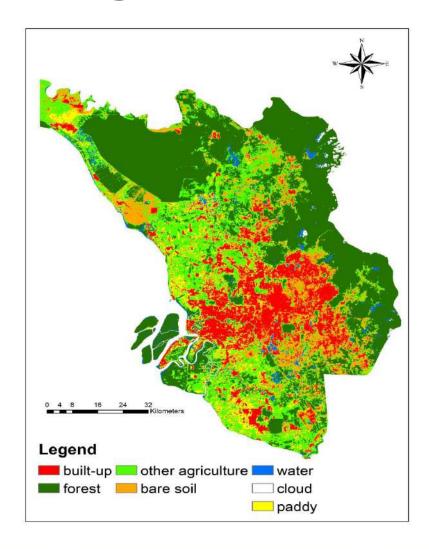
■ Accuracy = 90%

Peninsular Malaysia -132,156 square kilometres

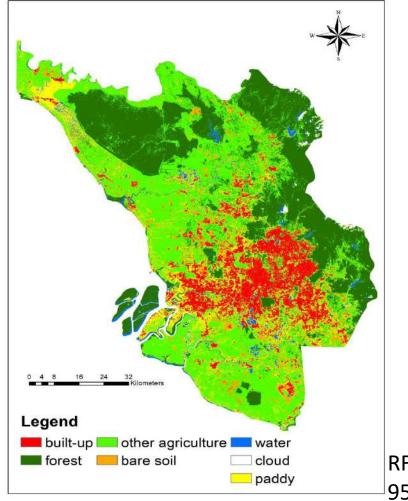




### Google Earth Engine (GEE) for Selangor



SVM = 93%











#### **Discussions**

- REMAP allows quick and accurate way of mapping over wide area.
- GEE allows more control over the algorithms and tuning.
- Both methods are making large scale mapping more manageable as users are not required to store/download big data/perform complex algorithm development.



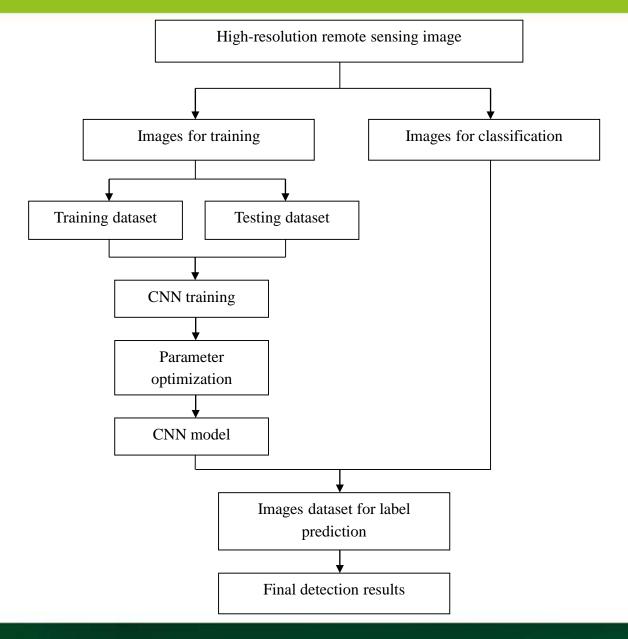


### Very High Resolution Satellite Data

- Tree detection and counting relies on high resolution datasets.
- Deep learning can effectively perform this repetitive task.
- More efficient than the use of Object-based Image Analysis (OBIA) (Guirado et al., 2017) for vegetation crown detection.
- DL-based approach is based on open-source software (Python).









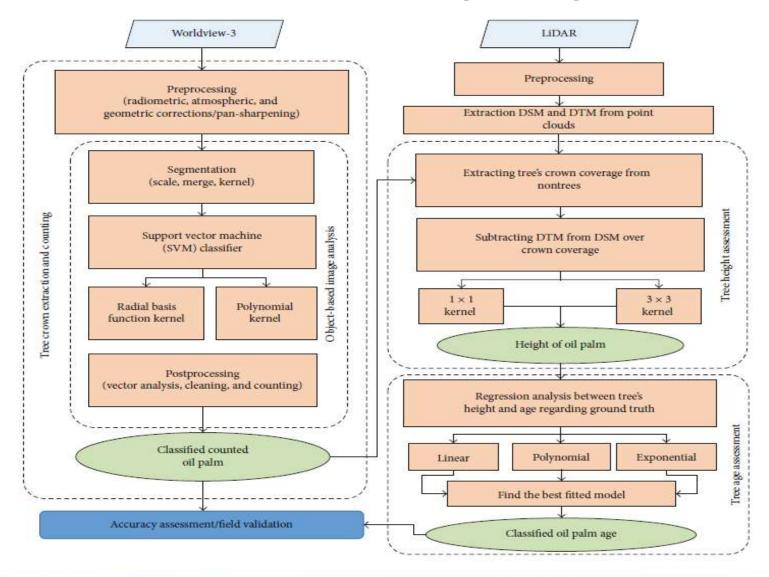


| Types of Oil Palm | Classification of Oil Palm Detection and Background | Accuracy (%) |
|-------------------|-----------------------------------------------------|--------------|
| Young             |                                                     | 94           |
| Matured           |                                                     | 88           |



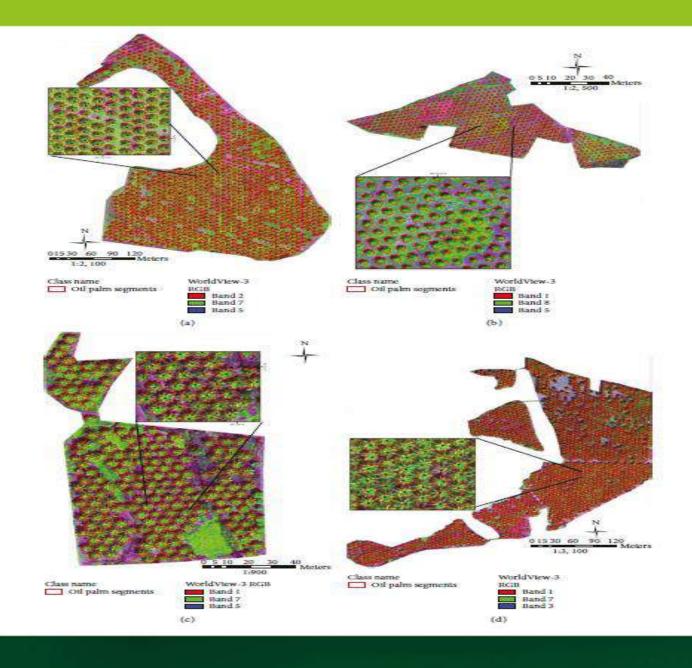


#### Fusion of VHR and LiDAR Data for Counting and Age Estimation











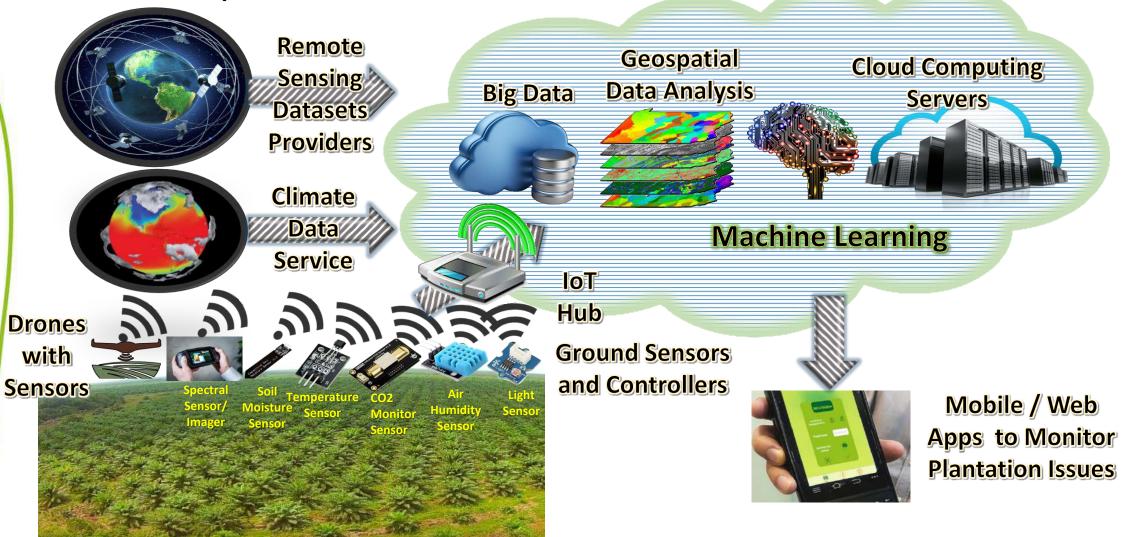


| No | Methods of data acquisition                    | ML algorithms                | Summary                                                                                             |
|----|------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|
| 1  | Field spectroscopy – ASD (Liagath et al, 2014) | KNN, Bayes                   | High level of discrimination                                                                        |
| 2  | Field spectroscopy – GER (Ahmadi et al 2017)   | ANN                          | High level of discrimination                                                                        |
| 3  | Airborne (Piloted) - on going                  | SVM, ANN, RF                 | Most studies applied spectral indices with no comparisons with ML                                   |
| 4  | Airborne – RGB UAV (Kalantar et al 2017)       | SVM OBIA                     | Oil palm tree counting                                                                              |
| 5  | Airborne - Multispectral UAV – on going        | ANN, SVM combined with NDREi | Good accuracy for diseased oil palm detection                                                       |
| 6  | Satellite – Quickbird (Santoso et al 2017)     | RF, SVM, CART                | ML classified healthy vs<br>unhealthy palms better than<br>spectral index but no early<br>detection |
| 7  | Satellite - Quickbird (Li et al 2017)          | Deep Learning                | High accuracy for tree counting                                                                     |
| 8  | Satellite – WorldView-3 (Rizaeei et al 2018)   | SVM                          | High accuracy for counting and age estimation                                                       |
| 9  | Satellite – Landsat (on-going, under review)   | REMAP/GEE cloud computing    | High accuracy and efficiency for large scale mapping (national)                                     |



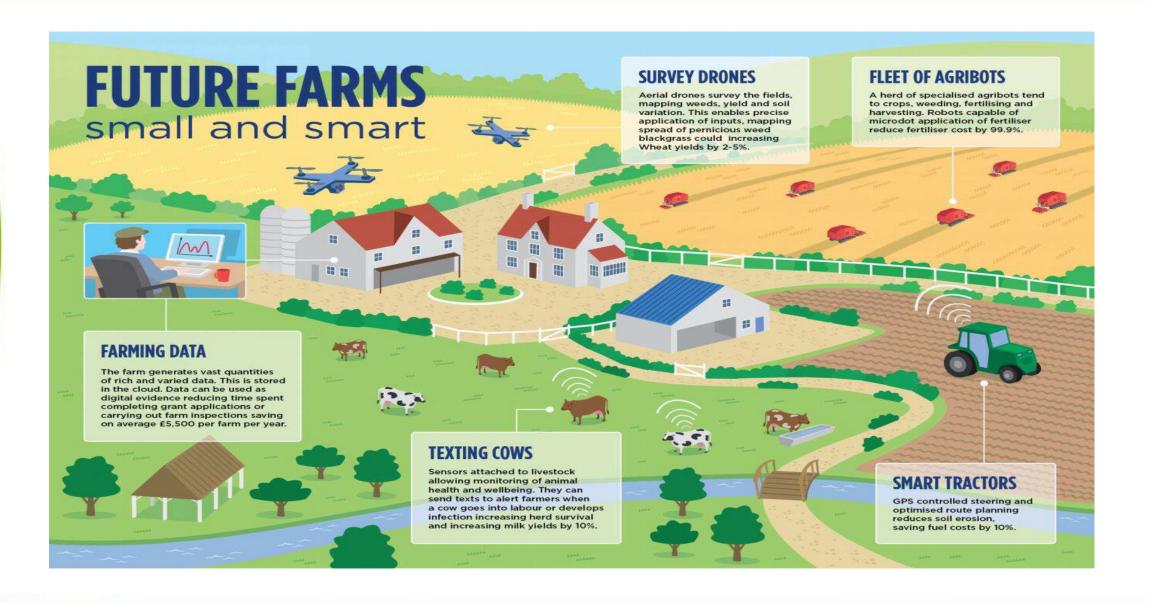


#### Proposed Framework for Oil Palm Plantation















#### **Conclusions**

- Remote sensing is a useful tool for oil palm plantation management.
- Al and ML have important roles in remote sensing of oil palm plantation management.
- AI + RS formed core components of modern agriculture.
- Applicable at different spatial scales field, airborne, spaceborne and used to complement each other.
- Input and interpretation from experts in the field produce the best decision making process.





#### **Future work**

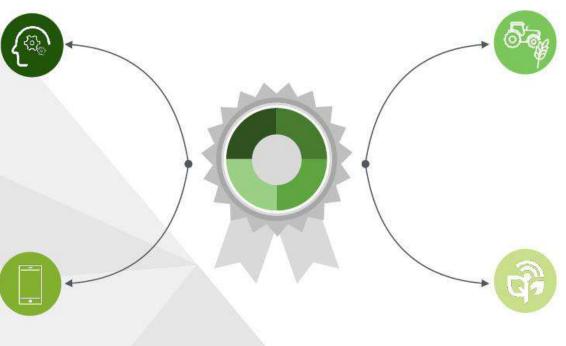
- Al/ML algorithms are advancing and further testing required in order to increase accuracy, robustness and automation.
- More integration with cloud computing, IoT, new generation platforms and sensors will be interesting to explore.
- Data fusion (optical/radar/lidar etc).





#### AI Technology to make a crucial impact on Agritech

Deep learning application to identify potential defects and nutrient deficiencies in the soil



Machine learning technology enabling farmers to reduce the use of herbicides by spraying only where weeds are present

AI Sowing App which sends sowing advisories to participating farmers on the optimal date to sow



AI for Precision Farming to develop a crop yield prediction model using AI to provide real time advisory to farmers





#### References

- Ahmadi, P., Muharam, F. M., Ahmad, K., Mansor, S., & Abu Seman, I. (2017). Early detection of ganoderma basal stem rot of oil
  palms using artificial neural network spectral analysis. Plant disease, 101(6), 1009-1016.
- Cheng, Y., Yu, L., Zhao, Y., Xu, Y., Hackman, K., Cracknell, A. P., & Gong, P. (2017). Towards a global oil palm sample database: design and implications. International journal of remote sensing, 38(14), 4022-4032.
- Guirado, E., Tabik, S., Alcaraz-Segura, D., Cabello, J., & Herrera, F. (2017). Deep-learning versus OBIA for scattered shrub detection with Google earth imagery: Ziziphus Lotus as case study. Remote Sensing, 9(12), 1220.
- Hird, J. N., DeLancey, E. R., McDermid, G. J., & Kariyeva, J. (2017). Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sensing, 9(12), 1315.
- Ibrahim, A. (2014) Sustainability-of-Malaysian-Palm-Oil-Industry. http://www.mpoc.org.my/upload/IPOSC-2014-Sustainability-of-Malaysian-Palm-Oil-Industry\_Dr-Ahmad-Ibrahim.pdf
- Izzuddin, M. A., Seman Idris, A., Nisfariza, M. N., Nordiana, A. A., Shafri, H. Z. M., & Ezzati, B. (2017). The development of spectral indices for early detection of Ganoderma disease in oil palm seedlings. International Journal of Remote Sensing, 38(23), 6505-6527.
- Izzuddin, M. A., Idris, A. S., Wahid, O., Nishfariza, M. N., & Shafri, H. Z. M. (2013). Field spectroscopy for detection of Ganoderma disease in oil palm. MPOB Information Series, 532.





- Karmas, A., Tzotsos, A., & Karantzalos, K. (2016). Geospatial Big Data for Environmental and Agricultural Applications. In Big Data Concepts, Theories, and Applications (pp. 353-390). Springer.
- Kushairi, A., Singh, R., & Ong-Abdullah, M. (2017). THE OIL PALM INDUSTRY IN MALAYSIA: THRIVING WITH TRANSFORMATIVE TECHNOLOGIES. Journal of Oil Palm Research, 29(4), 431-439.
- Lee, J.S.H., Wich, S., Widayati, A. and Koh, L.P., 2016. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sensing Applications: Society and Environment, 4, pp.219-224.
- Liaghat, S., Mansor, S., Ehsani, R., Shafri, H. Z. M., Meon, S., & Sankaran, S. (2014). Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Computers and electronics in agriculture, 101, 48-54.
- Murray, N.J., Keith, D.A., Simpson, D., Wilshire, J.H. & Lucas, R.M. (2017) REMAP: An online remote sensing application for land cover classification and monitoring. bioRxiv. DOI: 10.1101/212464
- Murray, N. J., Keith, D. A., Simpson, D., Wilshire, J. H., & Lucas, R. M. (2017). REMAP: An online remote sensing application for land cover classification and monitoring. Methods in Ecology and Evolution.





- Murray, N.J., Keith, D.A., Simpson, D., Wilshire, J.H., Lucas, R.M. (2017) REMAP: The remote sensing ecosystem monitoring and assessment pipeline. https://remap-app.org
- Nurulain Abd Mubin, Eiswary Nadarajoo, Helmi Z.M. Shafri, and Alireza Hamedianfar (2018). Young and Mature Oil Palm Tree
  Detection and Counting Using Convolutional Neural Network (CNN) Deep Learning Method. Submitted to the International
  Journal of Remote Sensing.
- Rizeei, H. M., Shafri, H. Z. M., Mohamoud, M. A., Pradhan, B., & Kalantar, B. (2018). Oil palm counting and age estimation from WorldView-3 imagery and LiDAR data using an integrated OBIA height model and regression analysis. Journal of Sensors, 2018.
- Shafri, H. Z., Anuar, M. I., Seman, I. A., & Noor, N. M. (2011). Spectral discrimination of healthy and Ganoderma-infected oil palms from hyperspectral data. International journal of remote sensing, 32(22), 7111-7129.
- Vijay V, Pimm SL, Jenkins CN, Smith SJ (2016) The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PLoS ONE 11(7): e0159668. doi:10.1371/journal.pone.0159668





# Thank you!!

## Muchas Gracias!!



