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Introduction

* Era of Industrial Revolution 4.0 (IR4.0) and Agriculture 4.0
* Precision agriculture and automation
* Remote sensing as an integral technology to provide data and images.

* Artificial intelligence (Al) is a branch of computer science that aims to create intelligent
machines/systems. It has become an essential part of the technology industry.

* Machine Learning (ML) is one of the core areas of Al — provides the brain to the Al (via
algorithms).

* Al is blending with remote sensing imagery in different industries to improve efficiency
and open new possibilities.

* ML enables computers to learn from data to automatically recognize objects, cluster
an image by similarity or classify, among others.

* Al and ML capabilities are embedded inside applications and provide users with
functionality such as automation or predictive capabilities

* Al and ML in plantation management using remote sensing will be the focus of this
session.
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D e O A iR
INDUSTRIAL REVOLUTION

Theindustrial revolution Mass production Automated production Autonomous decision
begins. Mechanization assembly lines using using electronics, making of cyber physical
of manufacturing with the electrical power programmable logic systems using machine

introduction of steam controllers (PLC), learning through
and water power IT systems and robotics cloud technology

1st 2nd 3rd 4th

Revolution Revolution Revolution Revolution
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Mobile devices

Cloud computing i &l ) loT platforms

. Industry 4.0
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| interfaces

customer profiling

Big data analytics
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| Smart sensors 3D printing
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Transformative Technologies

\ Transformative

' technologies are
crucial for the oil palm
industry to remain

| viable and sustainable

- Among others include

' RS, cloud computing,
advanced algorithms,
big data etc.

The Future of the Oil Palm Industry

PRODUCTIVITY

« Best Agricultural Practices
+ Automation

SUSTAINABILITY FOOD and NUTRITION

= MSPO Certification = Improved Quality & Food
2 r-.- Safety 3
+ Biodiversity Conservation Programme 1 _& = Qil Palm Phenolics

Climate Change Programme

= Phytonutrients
« High Value Oil

INTERNET OF
,--THINGS (IoT)____

= I. wireless Sensorand | “OLEOCHEMI
BIOMASS & BIOENERGY I Imaging Technologies ! )
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g - Public Health and Crop Care
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Technologies :imagin_g ' Biology

—————————————
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| Advanced
Carbon capture & storage

Statistics grids chemistry

(-===== - Revolution biology
Biocatalysis !Sensors ; || NN Supercomputers
mm = .~ o
iCloud Computing 1 Knowledgeable and Technically Competent Brone Technology
—--BisaGtvE "7 Personnel e
fractionation Financial Support o

Smart Combinatorial
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Associated with
Remote Sensing
Technology

Source: Kushairi et al, 2017
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Artificial Intelligence - The Brain behind Industry 4.0

ML is the

aVER brain

/e

mGs | behind Al
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PREDICTIVE TEXTTO IMAGE
ANALYTICS SPEECH RECOGNITION

ARTIFICIAL

e SheCh MACHINE
INTELLIGENCE P el VISION
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\} CLASSIFICATION

LANGUAGE
PROCESSING gﬂth
(NLP) ¥
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Al and ML

= Al involves machines/software that
can perform tasks that are
characterise of human intelligence.

= Al was catalyzed by breakthroughs in
an area known as machine learning.

= Machine learning is simply a way of
achieving Al.

ARTIFICIALINTELLIGENCE

Engineering of making Intelligent
Machines and Programs

MACHINE LEARNING

Ability to learn without being
explicitly programmed

DEEP LEARNING

Learning based on Deep
Neural Network

1950 1960's 1970's  1980's 1990's  2000's 20065 2010’5 2012s 2017

=
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Data-Driven Agriculture

Ag researchers have shown that data-driven agriculture:
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Algorithms
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Cities 4.0

Manufacturing 4.0

Agriculture 4.0

Oil Palm Industry
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Remote Sensing

» Remote sensing is generally
defined as the technology of
measuring the characteristics of an
object or surface from a distance.

* Divided into active and passive
systems.

= Active — Lidar, Radar

» Passive — Multispectral,
Hyperspectral

v
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SENSORS AND

AUTOMATED STEERING

HIGH PRECISION

SYSTE

MS

POSITIONING SYSTEMS

VARIABLE RATE
TECHNOLOGY

GEOMAPPING

INTEGRATED ELECTRONIC
COMMUNICATIONS

Remote Sensing

Al/ML —]

Field Spectroscopy Airborne Scapeborne
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Machine Learning in Remote Sensing

=g

UThese algorithms do not assume specific

dMachine learning is a subdivision of class distributions and well suited for
Artificial Intelligence (Al) and also covers complex environments or approaches
data mining/classification approaches. using fused data sets.

UExample of machine learning algorithms
that have been widely utilized in remote
sensing applications:

= Random Forest (RF)
= Support Vector machines (SVM)

= Artificial Neural Network (ANN)

aaedepalma l %cenipalma




L

\

[MACHINE LEARNING ]

SUPERVISED
LEARNING

! [ R
l
| CLASSIFICATION
H‘
i - S
- S
{ Support Vector
I Machines
- ./
= ™
| Discriminant
I Analysis
\“y‘ . )
I S ~
Naive Bayes
! = /
) i ~
\ Nearest Neighbor
f N~ =
(i = o
f Neural Networks
| b )

G XX

Conf cia

PALMA DE ACEITE

(' By
REGRESSION

T o

-~ ~
Linear Regression,

\ v

N

SVR, &GPR

e S

& ~
Ensemble Meathods

. _

s ~

Decision Trees

e _

/' —~
Neural Networks

-~ A

UNSUPERVISED
LEARNING
=
" =
CLUSTERING
K= _
= e N
K-Means, K-Medoids
Fuzz=zy C-Means
, & ——
- N
Hierarchical
-~ o
z ~
Cavussian Mixture
. = 4
— >y
Hidden Markowv
Model
e =,
- ~
Neural Networks
“ _

@&edepalma I %cenipalma



Support Vector Machine (SVM)

¢ supervised learning models with associated learning algorithms that
analyze data used for classification and regression.
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Random Forest

Random Forest Simplified

Instance
Random Forest __— / RS
/ \\__\\-;
| \\“A
/@>>3 /9\
cﬁsgopb 0}1})\\ m VAN d};obfé‘?b
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

| .
l Majority-Voting | l

'Final-Class |
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Artificial Neural Network (ANN)

Yy

S
N 7 7 & > >
ORI R AR
ARSI . A.rllan.h\.
g

Output layer

[nput layer R . “Hidden layer

X; > » 7, €4—o, Target
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Deep Learning (DL)

Spectral Bands
Classes Memberships

Input Layer {1) Hidden Lovers {8) Output Layer {j)

@gfedepalma I %cenipalma




ML + Big Data + Cloud Computing

Machine Learning Is an approach to make algorithms
“‘smarter’ as they “learn” from more examples. That’s
one of the reasons why Big Data and Al seem to be
evolving together. Cloud computing enables an
iInfrastructure for big data storage and analysis more
effectively.
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RS Big Data

Sources/types Big data Challenges
: Collect
Ground, aerial, Volume
satellite, and UAV Manage
-
Store
Optical, microwave, RS as &
hyperspectral, LIDAR ] : i Archive
ypersp Veramt. Big data ./Elﬂtlt}'
| Analyse
Large achieve, real- s Visualize
time, Variety Distribute
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Cloud Computing

Geospatial Domains

Urban
Planning soclal Emwironment Smart
Sclences Siences Cities
- o
; imate Geo-nformatics Madel
Ny, Science (Data l::cchc::f (e.g., data Simutation{e.g
4 Analytics) R mining] ., dust storm)
7 2 < Jo
Volume = “E > N - S
: o : J . 3 | - & o
[@ g Velocity I :
Archive & 5
Q. 2 Varie Managemen Eh ‘s
<> [EREESCER 5 Simulstion !
- >
Veracity
0] g 0’HDFS " =y Ny
o Log A s srarars ¢
WA, MongoDB Rasdaman %i 5 SpOl'
>, On-demand Measured Broad Network Rapid Resource
1 Self-service Service AcCcess Elasticity Pooling

Cloud Infrastructure

Source: https://www.sciencedirect.com/science/article/pii/S0198971516303106
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. CASE STUDIES

|

ASSESSING CROP/SOIL HEALTH

=Fjeld/Lab Spectroscopy g

meaningful information from millions of satellite
images. Geo-spatial data can provide information
on crop distribution patterns across the globe
and the impact of weather changes on agriculture

1
. S ate I I Ite PREDICTIVE ANALYTICS AGRICULTURAL ROBOTS
| **e.. 0® 7

|

I .

'

fI Use machine learning and computer vision
| algorithms to classify data and extract

Use machine learning models for agricultural .
2 s his category includes ground rob

R&D, seasonal analysis, modeling different P W srieults ¢
perfor arious agricultural tasks

CBlNSIGHTS market scenarios, and optimizing business

costs, among other applications.
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Field Spectroscopy

* Important to study the fundamental response towards disease severity and
nutrient deficiency.

» Also for the development of spectral library.

= Studies have Indicated some success (Shafri et al., 2011; Liaghat et al., 2014;
Izzuddin et al., 2017; Ahmadi et al., 2017) but further improvements are needed.
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First derivative of spectral reflectance

Wavelemzih (nmr)

Legend
healihy

—— Infected

Spectral measurement
on leaves (yellow box)

Source: (Izzuddin et al.,

2013)
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\ ML on field data
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Healthy (GO) and Ganoderma-infected (G1, G2

Liaghat, S., Ehsani, R., Mansor, S., Shafri, H. Z., Meon, S., Sankaran, S., & Azam, 5 t.,20:.¢). Early detection of basal stem rot
Jjadisease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International

> z I =
PALMA DE ACEITEjournal of remote sensing, 35(10), 3427-3439. ﬁﬁedem'ma é‘écenipalma




e Linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), vs k-nearest neighbour (kNN), and Naive—Bayes (NB) ML
classifiers

* Analysis of variance (ANOVA) with a 5% level of significance (a = 0.05)
was performed to study the effect of different classification models
(LDA, QDA, kNN, and NB) and different datasets (raw, first, and
second derivatives) on classification accuracies

e Overall accuracy rate of 97% (without false-negatives) when the kNN-
based classification model was used
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Table 2. Average overall and individual class classification accuracies obtained from preprocessed
data sets using LDA-, QDA-, kNN-, and NB-based models.

Average classification accuracies (%)

No. of PCs Overall GO Gl G2 G3 k SD (%)
LDA 33
Raw 6 95.6 96.8 95.5 96.9 04 8 0.9
First D 15 03.1 96.8 89.6 93.7 92.6 2.6
Second D 23 89.3 86.4 90.9 87.0 93.1 2.8
QDA 8.5
Raw 6 85.0 86.3 84.9 3.9 83.5 11
First D 15 92.3 96.9 91.0 03.6 87.1 36
Second D 23 86.8 98.5 95.5 87.4 62.6 14.1
kNN 5.6
Raw 6 86.5 84.5 91.2 88.7 81.2 |, 2 3.8
First D 15 096.4 96.8 97.1 95.3 96 .8 L 2 0.7
Second D 23 97.3 08.5 05.6 96.9 08.5 1, 2 1.2
NB 10.5
Raw 6 96.0 96.9 08.5 91.9 96.6 2.5
First D 15 83.5 84.2 94.0 81.1 71.4 8.1
Second D 23 78.9 76.5 91.0 A 62.7 10.3

Note: D — derivative: SD — standard deviation.

v
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 Ahmadi et al (2017) used ANN to investigate the hyperspectral
capability to discriminate severity levels

Severity level Symptoms
T1 (healthy) Negative GSM? test

Healthy leaves and normal palm canopy
T2 (mild) Positive GSM test

Presence of mycelium in the stem bark, or brittle wood
Healthy leaves and normal palm canopy

T3 (moderate) Positive GSM test
Presence of mycelium in the stem bark, and fruiting body
Less than 50% fohar symptloms

T4 (severe) Presence of fruiting body at the bottom of the rotten stem
More than 50% foliar symptoms

A - L B:-
P !
< 10 / ! X 10
< /" \ <.
= ol = S =
_'{E s o -E
= 4 =
o vesinassie g i
g e B 6.
L —— T4
I ] ] ] | | 1 |
500 520 540 560 580 600 500 520 540 560 580 600 @%fede o l é@ o
cenipaima
Wavelength (nm) Wavelength (nm) ’ s




Input Layer Hidden layer Qutput Layer

Discrimination accuracy® (%)

Frond 9 Frond 17
Dataset Wavelengths (nm) Healthy (T1) Mildly infected (T2) Overall Healthy (T1) Mildly infected (T2) Overall
RAW 553, 557, 562 100.0 100.0 100.0 80.0 85.0 82.8
RAW 550 to 560 66.7 100.0 83.3 66.7 100.0 83.3
FDR 550 to 560 100.0 100.0 100.0 100.0 66.7 83.3
SDR 540 to 550 66.7 66.7 66.7 100.0 100.0 100.0

@ aThe accuracies were derived for 46 spectral leal measurements of T1 and 46 spectral leal measurements of T2 for each frond number.
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Airborne/UAV RS

* Acquired data using piloted aircraft and UAV for oil palm plantation
analysis.

* Previous campaigns were flown using AISA sensors
 Utilised spectral indices developed from field studies.

* Current research going towards UAV utilisation due to piloted aircraft
limitations (cost, maintenance, schedule etc).
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Data Acquisition and Equipment

Piloted aircraft with
AISA sensor
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UAV with OCI
hyperspectral
sensor

@ XIX

QQQferen Q @6 %
PALMA DE ACEITE fedepalma cenipaima

Vo i Corderorce




&3 =1 Scroll {0.08714)

¥ ENVI Plot Window — O x
@==) USB3.0

«~— 6cm — : &2 : £ tral Profiles

File Edit Options Plot_Function Help

Jil Palrn

OCI-UAV-1000

Wavelength range: 600-1000 nm, 103 bands

¥ ENVI Classic — O ¢

File Basic Tocls Classification Transform  Filter Spectral Map Vector Topographic Radar Window Help

Supervised ? Parallelepiped
Unsupervised » Minimurn Distance
Decision Tree 3 Mahalanobis Distance
Endmember Collection Maximurn Likelihood
Create Class lmage from ROls Spectral Angle Mapper

Post Clacsification 5 Spectral Information Divergence

UPM Test site i il

Meural MNet
Support Vector Machine
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Challenges with UAV-based
hyperspectral systems

» Risk
= Complexity of device integration
= Stability of platform

= Data distortion

File Edit Options Plot_Function Help

» Data processing complexity

Bayspec OCI-F-1000

3
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Multispectral UAV

d Model:-
» MicaSense RedEdge

1 Benefits:-
= Easier to handle
= Cheaper
= 5 bands

=
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[ Manual Trigger Button Five Discrete Bands
0

i Status LED

| CameraPorts; 0—

llll + Removable Wi-Fi SD Card Slot

| Module . DLS Ports:

" E;‘”:;:lnd Trigger + Magnetometer

f{l Communication ' SPS

| DLS/GPS Mode L
Connection

RedEdge-M”

Weight:

Dimensions:

External Power:

Spectral Bands:

RGB Color Output:

Ground Sample Distance (GSD):

Capture Rate:
Interfaces:
Field of View:

Triggering Options:

Specifications

170 grams (6 o0z)
(includes DLS and cables)

94cmx6.3cmx4.6cm
(37inx25inx18in)

42VDC-156VDC
4 W nominal, 8 W peak

Blue, green, red, red edge, near-IR
(global shutter, narrowband)

Global shutter, aligned with all bands
8 cm per pixel (per band) at 120 m (~400 ft) AGL
1 capture per second (all bands), 12-bit RAW

Serial, 10/100/1000 ethernet, removable Wi-Fi, external trigger,
GPS, SDHC

47.2° HFOV

Timer mode, overlap mode, external trigger mode (PWM, GPIO,
serial, and Ethernet options), manual capture mode
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Near Real-time Data Analysis

SERVICE PROVIDER

_ggg_ﬂ

Drone flight and
image acquisition
20 minutes

Image processing

= 4 minutes

24 minutes

Image analysis

I minute

25 minutes

In field scouting

= 5 minutes

30 minutes

W

)

Actionable results

<
& 2F

Result based
decision making

v
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ML Application for UAV Data Analysis

Classification of plantation land cover (15t level):- Original 5 bands

v

m () Unclassified
1: healthy op
2: bare soil

3: stress op

4: pushes

5: grass

Original image Maximum SVM — 89% ANN- 85% 6: shrubs

7. roof /building
. . 8: drainage
Likelihood — -
85(y 10: bare sail2
0 .

S road

SR &6 | Fren
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Spaceborne (Satellite)

» Issues such as biodiversity loss, deforestation, protection of high conservation value areas.

» Satellite remote sensing plays an important role in monitoring oil palm plantations.

» Traditional methods require storage of huge amount of data and in-house processing
capabilities.

» Recent trend has been to perform image processing using cloud computing such as Google
Earth Engine (GEE).

» The advantages of cloud computing include the availability of a large volume of satellite data
already stored in the cloud. This will avoid the need of an external hard disk and facilitate easy
data access.

» Using parallel computing, users will have unlimited computer processing capabilities.
Moreover, code and classification algorithms can be shared and discussed in the shared
platform.
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Google Earth Engine

—

}’ add mosaic i
‘ stance
{ join ]  p— : =
focal_min convolve ~\= ~\= ~\= ‘\=
—r— — =

\= \ E——

Algorithms === =

Geospatiall Storage Q_!mde @W@
Dat; TQ@S@\_J\_S@MES‘
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REMAP (Remote Ecosystem Assessment &
Monitoring Pipeline)

-A free online mapmaking tool
that allows wusers to detect
environmental change over time
using satellite images.

-National level cloud computing
with REMAP powered by Google
Earth Engine.

-Years of desktop computing =
Days of cloud computing

v
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Land Cover Map Generated by REMAP 2017
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N built-up 77 other agriculture Il water

B forest [ bare soil [ Jcloud
[ Ipaddy

SVM =
93%

gle Earth Engine (GEE) for Selangor

Legend -~
I built-up [ other agriculture Il wate
B forest [T bare soil | cloud RF =
[ Ipaddy
95%
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Discussions

* REMAP allows quick and accurate way of mapping over wide
area.

» GEE allows more control over the algorithms and tuning.

»Both methods are making large scale mapping more
manageable as users are not required to store/download big
data/perform complex algorithm development.
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Very High Resolution Satellite Data

* Tree detection and counting relies on high resolution datasets.
» Deep learning can effectively perform this repetitive task.

» More efficient than the use of Object-based Image Analysis
(OBIA) (Guirado et al., 2017) for vegetation crown detection.

*» DL-based approach Is based on open-source software
(Python).
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High-resolution remote sensing image
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Final detection results

Nurulain Abd Mubin, Eiswary Nadarajoo, Helmi Z.M. Shafri, and Alireza Hamedianfar (2018). Young and

e
Mature Oil Palm Tree Detection and Counting Using Convolutional Neural Network (CNN) Deep Learning ﬁﬁedepam‘a ’ %m,pam
Method. Submitted to the International Journal of Remote Sensing (under review).
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Fusion of VHR and LiDAR Data for Counting and Age Estimation
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Field spectroscopy — ASD (Liagath et al, 2014)
Field spectroscopy — GER (Ahmadi et al 2017)

Airborne (Piloted) - on going

— RGB UAV (Kalantar et al 2017)

Airborne - Multispectral UAV — on going

Satellite — Quickbird (Santoso et al 2017)

Satellite - Quickbird (Li et al 2017)
Satellite — WorldView-3 (Rizaeei et al 2018)

Satellite — Landsat (on-going, under review)

PALMA DE ACEITE

* i Conlenonce

KNN, Bayes
ANN
SVM, ANN, RF

SVM OBIA
ANN, SVM combined with NDREi

RF, SVM, CART

Deep Learning

SVM

REMAP/GEE cloud computing

High level of discrimination
High level of discrimination

Most studies applied spectral
indices with no comparisons
with ML

Oil palm tree counting

Good accuracy for diseased oil
palm detection

ML classified healthy vs
unhealthy palms better than
spectral index but no early
detection

High accuracy for tree counting

High accuracy for counting and
age estimation

High accuracy and efficiency for
large scale mapping (national)
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SURVEY DRONES FLEET OF AGRIBOTS
Aerial drones survey the fields, A herd of specialised agribots tend
mapping weeds, yield and soil to crops. weeding, fertilising and

variation. This enables precise harvesting. Robots capable of
application of inputs, mapping microdot application of fertiliser

S ' ' l a a I ' S | I l a r spread of pernicious weed reduce fertiliser cost by 99.9%.
blackgrass could increasing

> Wheat yields by 2-5%.

FARMING DATA
The farm generates vast quantities ”

of rich and varied data. This is stored

in the cloud. Data can be used as _
digital evidence reducing time spent .' “ -
completing grant applications or - <

carrying out farm inspections saving
on average £5,500 per farm per year.

I Sensors attached to livestock
allowing monitoring of animal
health and wellbeing. They can

, send texts to alert farmers when

SMART TRACTORS

GPS controlled steering and
optimised route planning
reduces soil erosion,

saving fuel costs by 10%.

a cow goes into labour or develops
infection increasing herd survival
and increasing milk yields by 10%.
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Conclusions

» Remote sensing Is a useful tool for oill palm plantation
management.

= Al and ML have important roles in remote sensing of oil palm
plantation management.

» Al + RS formed core components of modern agriculture.

» Applicable at different spatial scales - field, airborne,
spaceborne and used to complement each other.

" Input and Iinterpretation from experts in the field produce the
best decision making process.

ﬁgfadepalma I %@enlpalma



Future work

= Al/ML algorithms are advancing and further testing
required in order to increase accuracy, robustness and
automation.

= More integration with cloud computing, 0T, new
generation platforms and sensors will be interesting to
explore.

» Data fusion (optical/radar/lidar etc).
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Deep learning application to
identify potential defects and

nutrient deficiencies in the soil

Al Sowing App which sends
sowing advisories to participating

s arce ~ H 1 Aatas ¥ oAt
farmers on the optimal date to sow

Al Technology to make a crucial impact on Agritech

Machine learning technology
enabling farmers to reduce the

use of herbicides by spraying only

Al for Precision Farming to

develop a crop yield prediction

model using Al to provide real

time advisory to farmers
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Thank you!!

Muchas Gracias!!
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