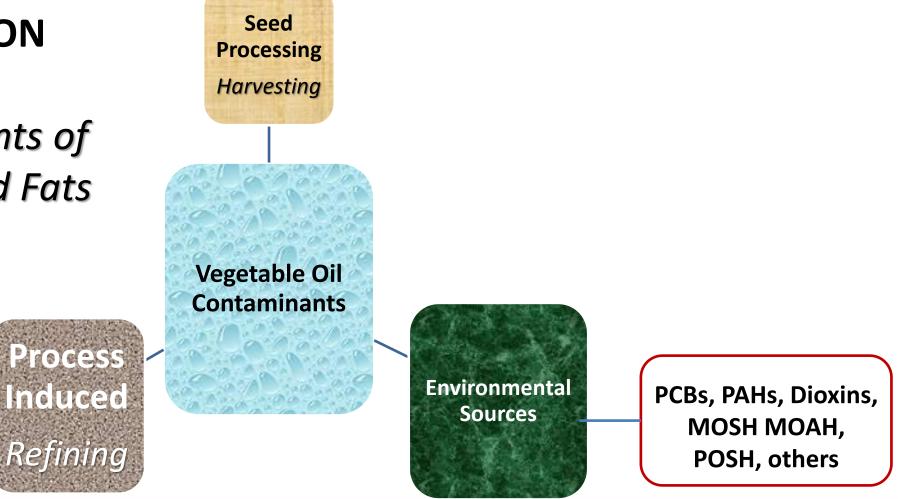


Improving palm oil quality and oil palm biomass until final product: <u>Case study</u>

María del Pilar Noriega E., PhD R&D and Innovation Director


26 al 30 de septiembre de 2022 | Centro de Convenciones Cartagena de Indias

Predepalma 60 Recenipalma

I. INTRODUCTION

Major contaminants of Vegetable Oils and Fats

Pictures: Foodwatch

I. INTRODUCTION – PROBLEM ASSESSMENT

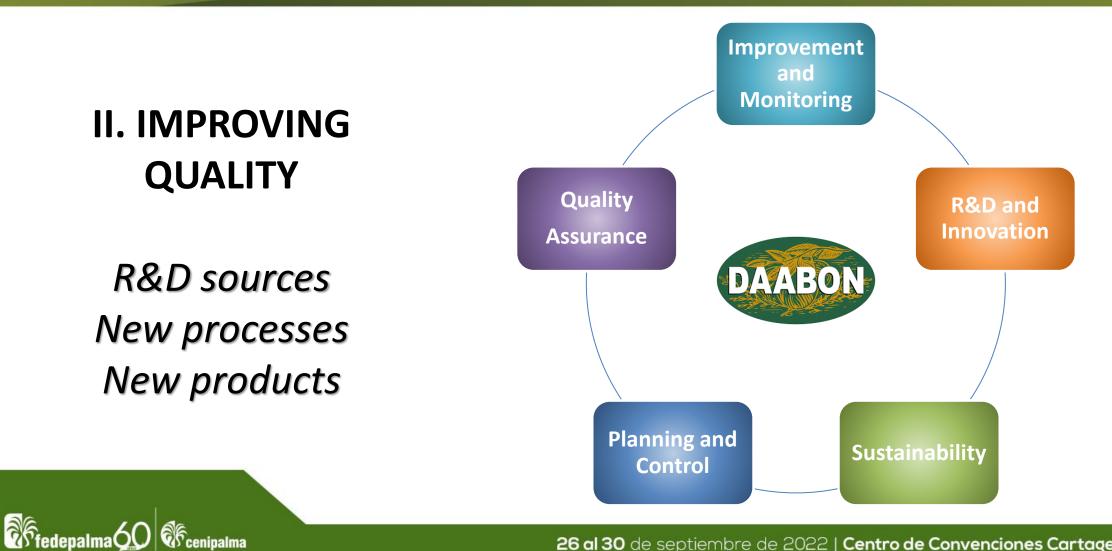
Redepalma60

Ecenipalma

EL PODER TRANSFORMADOR DE LA PALMA DE ACEITE

PRODUCT PATHWAYS

I. INTRODUCTION


A world of opportunities

C cenipalma

2 fedepalma 60

II. IMPROVING QUALITY

German orientation values for mineral oil hydrocarbons in foodstuffs (Eurofins)

Experimental

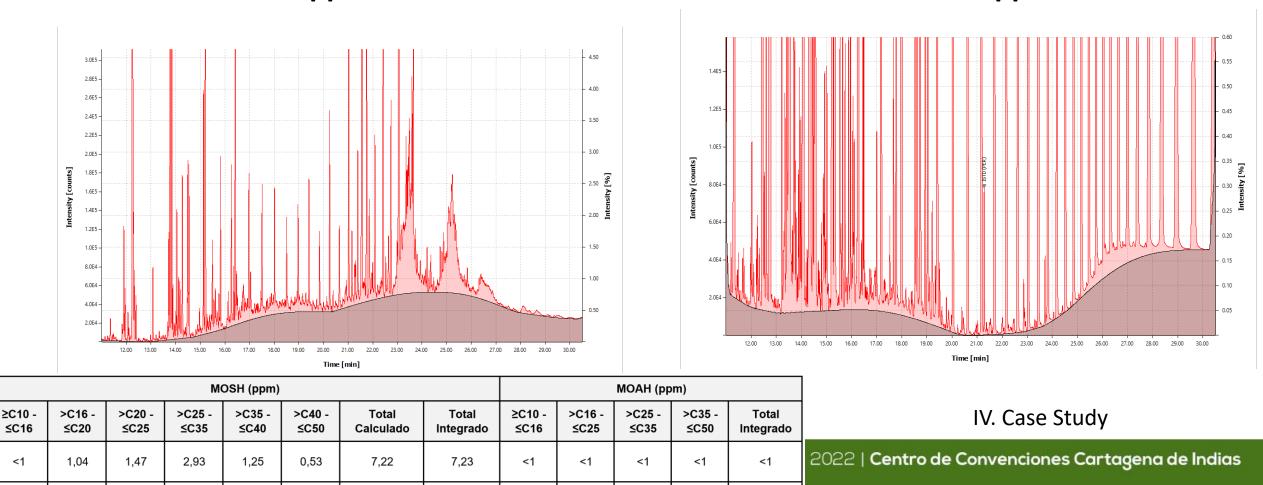
No.	Product group food category	MOSH and analogues [mg/kg] C ₁₀ -C ₅₀	MOAH [mg/kg] C ₁₀ -C ₅₀	Notes on application (notes on the food groups covered / on products not covered and deferrals/ on justifications, database or other special features, if applicable)					
1	Vegetable oils (such as rapeseed oil, sunflower oil, linseed oil, olive oil) (except tropical vegetable oil/fats and soya oil)	13	n.d.	these guidance values are not intended to be used for oils and fats derived from tropical plants (e.g. coconut oil) due to insufficient statistical database (Dec 2018)					
2	Bread and biscuits, fine bakery products, grain products and cereal- based products, cereals	6	n.d.	only applicable to final products for consumers; not for raw materials or raw dough					
3	Confectionery (sugar confectionery other than chewing gum), chocolate and cocoa- based confectionery	9	n.d.						

DIN EN 16995:2017-08

- This Standard specifies a highly efficient method for the <u>determination of saturated and aromatic</u> <u>hydrocarbons (from C10 to C50) in vegetable fats</u> <u>and oils</u> and foodstuff on basis of vegetable oils for which it has been interlaboratory validated.
- The method can be used for the analysis of mineral oil hydrocarbons (MOSH) and/or (MOAH).

III. METHODOLOGY

S. Bratinova, E. Hoekstra (Editors), 2019


JRC TECHNICAL REPORTS

Guidance on sampling, analysis and data reporting for the monitoring of mineral oil hydrocarbons in food and food contact materials

MOSH of a CPO_1 meeting orientation values < 8 ppm

MOAH of a CPO_1 meeting orientation values < 1 ppm

0,53

11,58

1,25

6,93

1,04

<1

<1

<1

1,47

2,53

2,93

13,53

7,22

34,57

7,23

35.06

<1

<1

<1

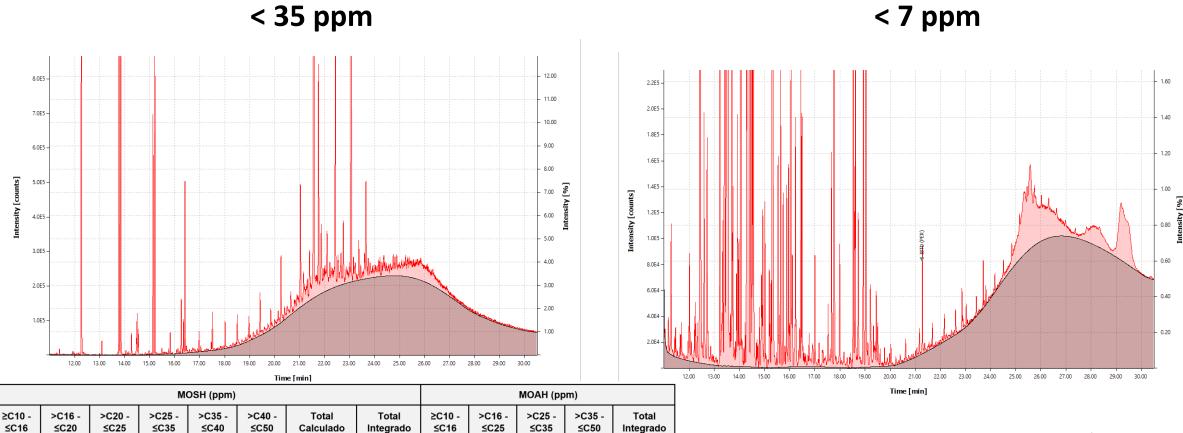
<1

<1

1,41

<1

5,12

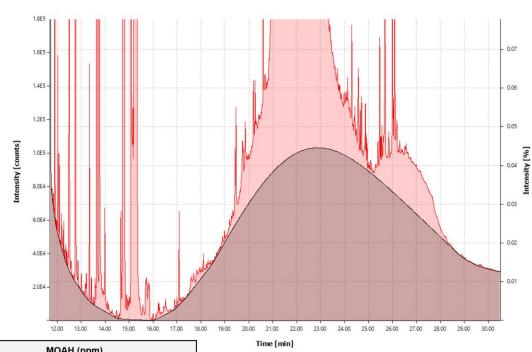

<1

6,53

EL PODER TRANSFORMADOR DE LA PALMA DE ACEITE

MOAH of a non-compliant CPO_2

MOSH of a non-compliant CPO_2

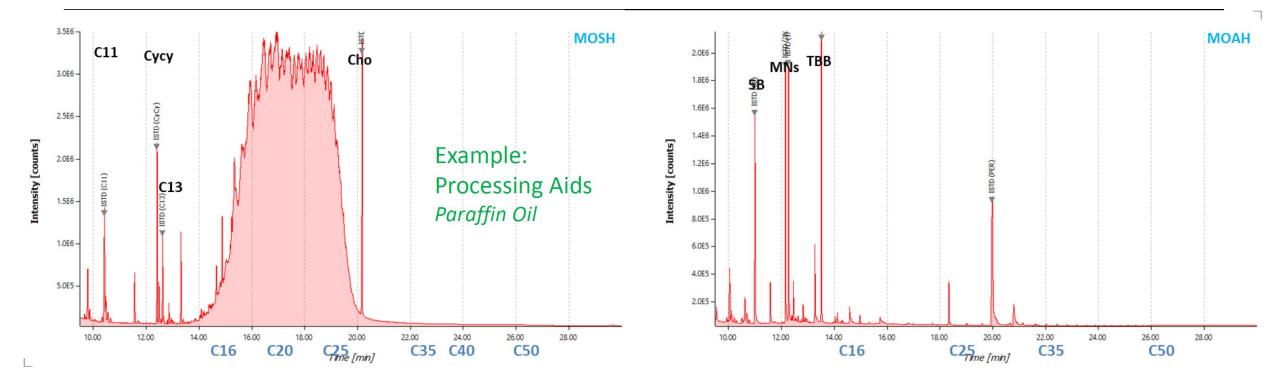

IV. Case	Study
----------	-------

MOSH of an olive oil_B meeting orientation values < 11 ppm

MOAH of a non-compliant olive oil_B < 12 pm

Centro de Convenciones Cartagena de Indias

Nombro do la	Contenido MOSH (ppm)	Contenido MOAH (ppm)	MOSH (ppm)								MOAH (ppm)				
Nombre de la muestra			≥C10 - ≤C16	>C16 - ≤C20	>C20 - ≤C25	>C25 - ≤C35	>C35 - ≤C40	>C40 - ≤C50	Total Calculado	Total Integrado	≥C10 - ≤C16	>C16 - ≤C25	>C25 - ≤C35	>C35 - ≤C50	Total Integrado
A – Triglyceride mixture	11	11	<1	<1	2,09	9,45	1,15	<1	12,69	12,97	<1	2,38	8,41	<1	10,79
B – Olive Oil	11	11	<1	<1	1,64	8,04	<1	<1	9,68	10,82	<1	2,80	5,84	3,66	12,31



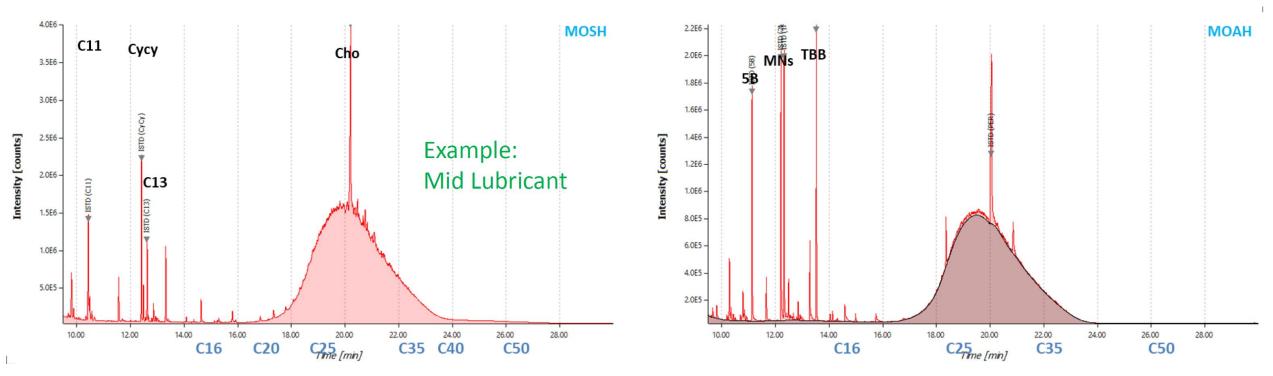
cenipalma

fedepalma

EL PODER TRANSFORMADOR DE LA PALMA DE ACEITE

The presence of processing aids coming from packaging

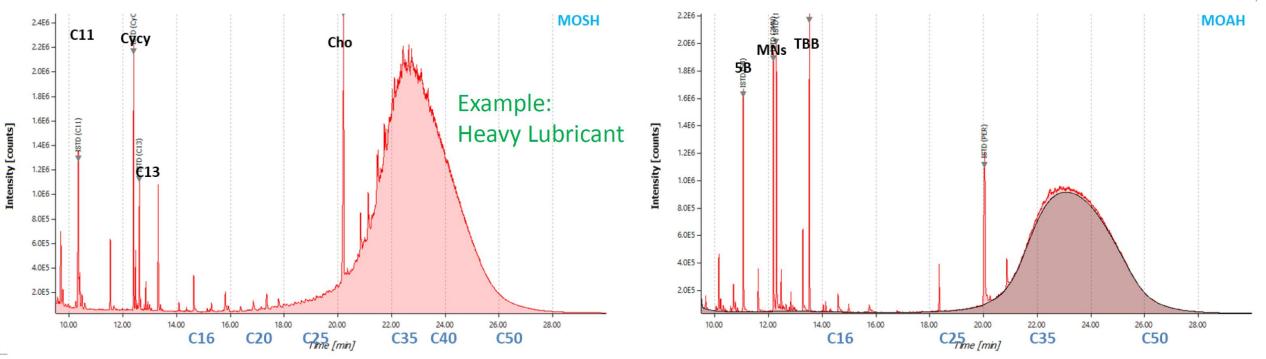
IV. Case Study



'cenipalma

RfedepalmaQ

EL PODER TRANSFORMADOR DE LA PALMA DE ACEITE


The presence of lubricanting oils

IV. Case Study

The presence of lubricanting oils

IV. Case Study

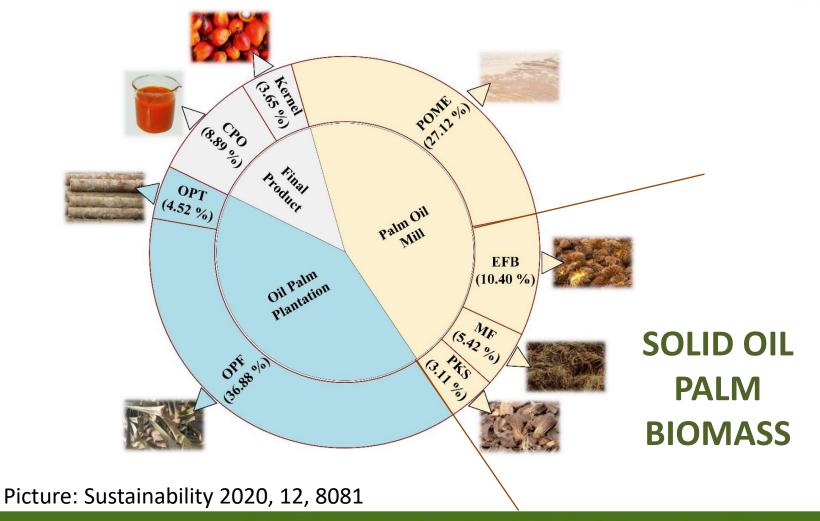
26 al 30 de septiembre de 2022 | Centro de Convenciones Cartagena de Indias

V. Conclusions

- ✓ Efficient data monitoring, processing and reporting of MOSH and MOAH is useful for the <u>reliable risk assessment</u> of contaminants in oils and fats.
- The possibility of analyzing CPOs for monitoring the presence of MOSH and MOAH in the process (i.e. oil palm mills) is an opportunity to improve procedures and product quality.
- ✓ High values of MOSH and/or MOAH in foods are also related to the incidental presence of lubricating oils, whether hydrocarbon based or not.

VI. REFERENCES

- Aromatic hydrocarbons of mineral oil origin in foods: Method for determining the total concentration and first results; M. Biedermann, K. Fiselier und K. Grob; J. Agric. Food Chem. 57 (2009)
- On-line coupled high performance liquid chromatography – gas chromatography (HPLC-GC) for the analysis of mineral oil; Part 1: method of analysis in foods, environmental samples and other matrices. A review; K. Grob & M. Biedermann; J. of Chromatography A 1255 (2012)
- Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography–gas chromatography– flame ionization detection – Evaluation of automated removal strategies for biogenic olefins; M. Nestola & T. Schmidt; J. of Chromatography A 1505 (2017)


PKS MC ¿ What's Next? **PKE Oil Palm Biomass EFB** DAABON

IMPROVING QUALITY

R&D sources New processes New products

Sustainable Oil Palm Biorefinery Tequendama

fedepalma 60 & cenipalma

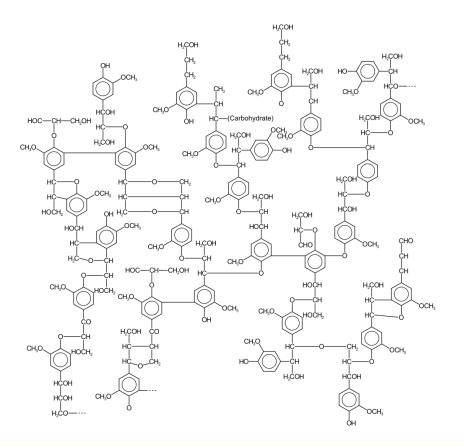
IMPROVING QUALITY

Orientation standards for solid biomass

The depalma 60 Steenipalma

Determination of total content of carbon, hydrogen and nitrogen UNE-EN ISO 16948:2015

Determination of total content of sulfur and chlorine UNE-EN ISO 16994:2017


Determination of the content of volatile matter UNE-EN ISO 18123:2016

Determination of minor elements UNE-EN ISO 16968:2015

Determination of major elements - Al, Ca, Fe, Mg, P, K, Si, Na and Ti UNE-EN ISO 16967:2015

Determination of the water soluble chloride, sodium and potassium content UNE-EN ISO 16995:2015

Chemical Composition of Biomass

IMPROVING QUALITY

Orientation standards for solid biomass

Moisture content UNE-EN ISO 18134-1:2016 UNE-EN ISO 18134-2:2017

Length and diameter of pellets UNE-EN ISO 17829:2016

Mechanical durability UNE-EN ISO 17831-1:2016

> Calorific Value UNE-EN ISO 18125:2018 Self-heating UNE-EN ISO 20049-1:2021

Fines

UNE-EN ISO 18846:2017 Particle size distribution for uncompressed fuels UNE-EN ISO 17827-2:2016 Particle size distribution of disintegrated pellets UNE-EN ISO 17830:2016 Test sieves ISO 3310-1 ISO 3310-2

Bulk density UNE-EN ISO 17828:2016 Particle density UNE-EN ISO 18847:2017

Ash content UNE-EN ISO 18122:2016

> Physical and Thermal Properties of Biomass

Cartagena de Indias

VII. ACKNOWLEDGEMENTS

Chem. Eng. Heidi Teran Pradilla

Chem. Carlo Chiappo

Eng. Liliana López

Chem. Eng. Ana Martínez

Chem. Eng. Luis Caicedo

Manuel Julián Dávila (CEO)

Thank you

