

THE TRANSFORMATIVE POWER OF OIL PALM

Yield potential

T. Durand-Gasselin and B. Cochard

26 - 30 September, 2022 | Cartagena de Indias

THE TRANSFORMATIVE POWER OF OIL PALM

Introduction

One question to breeders : "What is the yield potential of yours varieties ?" (Varieties)

The answer might be a long list of questions:

- Genetic potential ?
- Agronomic potential ?
- Soil ?
- Slope ?
- Rainfall ?
- Irrigation ?
- Sunshine ?
- Nutrition Policy ?
- What age ?
- And ...

• What is your management efficiency ?....

ନ୍ଦିର

FFB among different locations

EXAMPLE 1 : one "old fashion" cross

Locations	BN (kg)	ABW (kg)	FFB (t/ha)	Age
North Sumatra 1	15,8	13,4	27,6	7 to 10
North Sumatra 2	18,5	12,9	31,1	6 to 10
Cameroun	11,0	11,3	16,0	6 to 10
Benin	7,1	12,1	(11,4)	6 to 11
Côte d'Ivoire	11,2	11,5	16,1	6-9 or 10-13

EXAMPLE 2 : one cross "last generation"

Locations	BN (kg)	ABW (kg)	FFB (t/ha)	Age
North Sumatra 1	17,3	13,6	30,3	7 to 10
Nigeria 1	13,6	12,9 (23,0	6 to 9
Guatemala	17,6	17,5 🕻	40,5	6 to 9

> Hugh variation of "potential FFB" among locations from 1 to 3

Bunch number is the most affected factor (except Guatemala)

Redepalma

% OER among different locations

One "old fashion" cross	60's	70's	80's	90's	2000's	Avg
Indonesia (N. S.)		22,4	21,6	22,7	22,0	22,2
Côte d'Ivoire	20,8	20,7	20,9	21,4		20,9
Cameroun	21,8	21,3	22,6	22,7		22,0
Benin		22,4	20,7	22,9		22,1

One "new generation" cross	2000's
Indonesia (N. S.)	27,5
Nigeria	28,1
Guatemala	26,7

- Limite variation of "potential OER" among locations and ... time (= method).
- > OER is more stable than FFB

FFB in different year of planting and/or plot in one location

 Even with reference to precise material (cross), precise location, same management
Huge differences can be observed

ୄୖୄ୶ୖ

EL PODER TRANSFORMADOR DE LA PALMA DE ACEITE

Plantation yield profile (age and yield)

The plateau (7 to 25 years) = 85 % of the

crop (88 % up to 30 years)

Breeders predict **the plateau** observing the yield from 3 to 8 (or 9 or 10)

Whath is the best "aggregate" to predict **the plateau** ?

Early age does it predict all cycle yield....

Young age is a weak indicator of adult age

FFB yield 6-9 gives the best correlation with **the plateau**

A few Word about fertilisation

Planting material ("Varieties") are genetically more and more precise : the trend is that each of it will have a restricted genetic base.

Each one may have its own **"leaf mineral content" signature.** Here an example, for K.... The best cross for yield has the poorest leaf content. (From Dassou et al 2022).

Dassou and al. to conclude that "Our results also revealed specific optimum leaflet K content levels depending on the genetic origins of the oil palms"

One will no longer have to fertilize "oil palm" but specific varieties with their own requirements

From Dassou et al. (2022) : Oil palm (*Elaeis guineensis* Jacq.) genetic differences in mineral nutrition: specific leaflet mineral concentrations of high-yielding oil palm progenies and their implications for managing K and Mg nutrition; Plant Soil (2022) 475:279–292 ; https://doi.org/10.1007/s11104-022-05367-8

Nutrition policy : potential yield is obviously linked to nutrition: K example

Water requirements

Theoretically : 150 mm /month = 1800 mm of rain /year.... but **well distributed**

Unbalanced rainfall regime in South Myanmar

Locations	Rain fall	Water deficit*
North Sumatra 1	2 311	50
North Sumatra 2	2 600	0
Cameroun	2 850 mm	250 mm
Benin	1 200 mm	550 mm
Côte d'Ivoire	1 800 mm	360 mm
Guatemala	Irrigation	
Myanmar	4 015 mm	370 mm
(*) Simplified method		

Caliman (Oléagineux, Vol. 47. n° 5 - Mai 1992) state : « a variation of 100 mm in the annual water deficit, within range of 0 to 500 mm, causes yields to vary by (...) 10% of potential production with no water deficit."

Location	Hours of sunshine
Ecuador (Quininde)	< 1200
Benin	1425
Cameroun	1510
Côte d'Ivoire	1750
North Sumatra 1	1790
Guatemala	> 2800

 $(1 \text{ h/day} \approx 2.73 \text{ MJ} / \text{m}^2 / \text{day})$

Effect of lack of light on some progenies (Ecuador)

<u>Tentative conclusion : What is the yield potential?</u>

Having given some examples,Having done all those comments,It seems just impossible to give an answer...

In the other hand :

- Planters needs to discuss with banks and need to predict the net income (business plan) ...
- Capacity of the mill has to be calculated...
- Etc..

The question is important and we have to answer, at least we have to **give a range of potential yield**

Need to control the environmental conditions : within a block

Each genetic trial will have replication (generally 5 to 6) ; crosses been arranged at random : part of fertility variations are controlled.

References to control differences between blocks, years and locations

Genetic network in Indonesia 28 trials ; 490 ha ;427 crosses & Clones

Connecting crosses within and between years

Genetic network in Africa 30 trials, 780 ha,704 crosses & clones

Connecting crosses within and between years

Connect	ing cros	SES WILL	iiii allu	Detwee	ii years					2010	2011	2012	2013	2014	2015	2016
	1995	1997	1998	1999	2000				2010	10	10	3	3	2	7	5
1995	3	7	0	0	4		Between		2011		4	3	1	1	5	4
1997		21	8	2	6	+	Location	+	2012			4	2	2	2	3
1998			6	6	5				2013				5	0	2	0
1999				4	2		SUCIOSSES		2014					5	2	2
2000					2				2015						8	5
									2016							4

Genetic connections (i. e. palms sharing part of the same blood)

might be additional statistical connections

in the second state of the

So.... After having collected some informations, after discussion with managers and with a lot of care, we can try to provide some guidances that will help to answer **the** question :

What could be your yield potential with that planting material

Potential FFB yield

Some yield profiles ; good soils

- Guatemala : not far from maximum potential
- North Sumatra : good soils, 4th generation
- Africa, Nigeria : moderate water deficit
- Africa, Nigeria : acute water deficit

Potential OER

Year it has been implemented in seeds

To day EOR of 26-27 % is achievable
Target is > 30 % (next decade)

<u>Planting material currently being under development :</u>

North Sumatra (Indonesia)

FFB /ha	OER (% mill)	Oil yield/ha
34,5	26,2	9,1
34,1	26,0	9,0
29,4	27,5	9,0
29,5	30,0	8,9

Nigeria (\approx 320 mm WD)

FFB /ha	OER (% mill)	Oil yield/ha
22,6	26,9	6,2
21,9	27,0	5,9
18,8 (6-7 у)	31,1	5,9
16,7 (6-7 y)	30,9	5,3

- > A lot of hope for continuous yield improvements ;
- Agronomists, geneticists and breeders are working ;
- And phytopathologists also As yield will be combined with resistance to diseases....

