

Measuring biodiversity and ecosystem service responses to oil palm management

Michael D. Pashkevich, Becky Heath, Sarah H. Luke, Anak A.K. Aryawan, Andreas D. Advento, Ribka S. Tarigan, Elfrin N. Amzi, Damayanti Buchori, Benedictus Freeman, Cicely A.M. Marshall, Julia Drewer, Jassica P. Dewi, Alex J. Dumbrell, Amy E. Eycott, Martina F. Harianja, Purnama Hidayat, Amelia S.C. Hood, Jamal Kabir, David J. Kurz, Daniel Lim, Eka Lupitasari, Godspower Major, Lourdes M. Medrano, Ikhsan Mohammad, Jamal Mukhlish, Mohammad Naim, Ana F. Palmeirim, Pujianto, Brogan Pett, Ricardo Rocha, Ari Saputra, Helena S. Shin-Clayton, Jake L. Snaddon, Soeprapto, Jake Stone, Suhardi, Jonathan H. Timperley, Valentine J. Reiss-

Woolever, Rudi H. Widodo, Jean-Pierre Caliman, William A. Foster, Edgar C. Turner

The Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme

21ª CONFERENCIA
INTERNACIONAL
SOBRE PALMA DE ACEITE
21st International Oil Palm Conference

 International research collaboration of academics, palm oil industry, government, social enterprises and community partners

 Investigating how oil palm management influences biodiversity and ecosystem services

 Field activities currently in Indonesia, Malaysia, Liberia

 Oil palm plantations can harbour relatively high levels of biodiversity of many different species

QR codes across presentation take you to relevant free-toaccess research articles

- Oil palm plantations can harbour relatively high levels of biodiversity of many different species
- This includes species of conservation concern, pest species and beneficial species

Psittacus timneh: The Timneh parrot, found in West African plantations feeding on palm fruits.

- Oil palm plantations can harbour relatively high levels of biodiversity of many different species
- This includes species of conservation concern, pest species and beneficial species

Psittacus timneh: The Timneh parrot, found in West African plantations feeding on palm fruits.

QR codes across presentation take you to relevant free-to-access research articles

- Oil palm plantations can harbour relatively high levels of biodiversity of many different species
- This includes species of conservation concern, pest species and beneficial species

Psittacus timneh: The Timneh parrot, found in West African plantations feeding on palm fruits.

Cosmolestes picticeps: Assassin bug, which eats pests in Indonesian plantations

- Oil palm plantations can harbour relatively high levels of biodiversity of many different species
- This includes species of conservation concern, pest species and beneficial species
- All of these species are affected by oil palm management

Psittacus timneh: The Timneh parrot, found in West African plantations feeding on palm fruits.

Cosmolestes picticeps: Assassin bug, which eats pests in Indonesian plantations

Monitoring biodiversity & ecosystem services in oil palm landscapes

- Methods vary by species/service group
- Many methods are relatively simplistic, enabling effective monitoring without expert knowledge or skillsets
- Technology and Al are increasingly revolutionising monitoring of biodiversity and services

Camera traps - Mammals

© WWF

Filipa Palmeirim

Agung Aryawan

Motion-detected camera (photos &

Millie Hood

White-bellied pangolin (Liberia)

Leopard cat (Indonesia)

Images identified by experts or – increasingly – artificial intelligence

Pitfall traps – Ground arthropods

 Arthropods fall into traps, which are preserved in alcohol and identified using microscopes

Romeo Weah

Baited pan trap - Pollinators

Captured pollinators identified using microscopes

 Novel method involving baited pan trap with half male oil palm inflorescence in anthesis stage

Megan Popkin

Martina Harianja

Flux chambers – Greenhouse gases

Julia Drewer

Ribka Tarigan

- Build up of concentration of GHG over time
- Samples taken with a syringe
- Flux calculation using ground surface area, volume & time
- Samples analysed in lab

Plant use – Ethnobotanical surveys

 Survey plant biodiversity, and then interview local people to understand how they use different plant species

Cicely Marshall

Decomposition – leaf litter bags

 Mesh bags filled with 4 grams of chopped-up dried palm fronds. Bury in the ground and – after 40 days – assess change in weight.

Amy Eycott Adam Ashton-Butt

Predation – Plasticine caterpillars

 "Caterpillars" of plasticine glued to palm fronds for three days. Predators bite the plasticine, and leave a bite mark

Shape of bite mark tells the predator (e.g., ant vs grasshopper vs bird)

Helen Waters

Bioacoustics - Vocalising animals

Bioacoustic recorders placed in field.
 Small microphone records all vocalizing animals, which are identified on computer

LiDAR scanner - Vegetation complexity

Soil cores + metagenomics – Soil biodiversity

Sample Genome Through labwork and bioinformatics, identify the species present

corer

 From soil cores, can detect species present including fungi, bacteria, and other microbes

Alex Dumbrell

BEFTA has monitored more than 50 ecological indicators including:

Ground cover

Weather

features

Understory plants

Yield

Alternative herbicide application

Understory vegetation management and its effects on ecosystems and productivity

Riau, Indonesia

Luke et al (2020) Frontiers in Forests and Global Change 2.

- Large scale experimental project in established oil palm
- Investigates the effects of understory plant complexity on environmental conditions, ecosystem functioning and yield

Changes in management

Experimental setup: pretreatment

Road

Normal Reduced Enhanced

Removal of all ground vegetation

Business as usual

Ground cover allowed to regrow

Experimental setup: posttreatment

Road

Ditch

Reduced

Normal

Enhanced

Removal of all ground vegetation

50m 150m

Business as usual

Ground cover allowed to regrow

Clear and immediate effects of understory management as a result of the treatment

E-N ns; E-R ***; N-R *** B ns Vegetation height (cm) Canopy openness (%) Mar '13 Sep '13 Feb '14 Sep '14 Feb '15 Sep '15 May '17 Mar '13 Sep '13 Feb '14 Sep '14 Feb '15 Sep '15 May '17 E-N ns; E-R ***; N-R *** E-N ns; E-R ***; N-R *** 8 60 Fern cover (%) 50 40 Mar '13 Sep '13 Feb '14 Sep '14 Feb '15 Sep '15 May '17 Mar '13 Sep '13 Feb '14 Sep '14 Feb '15 Sep '15 May '17 E-N ns; E-R ***, N-R *** E-N **; E-R ***; N-R *** E Frond heaps cover (%) 8 60 Mar '13 Sep '13 Feb '14 Sep '14 Feb '15 Sep '15 May '17 Mar '13 Sep '13 Feb '14 Sep '14 Feb '15 Sep '15 May '17 Time Treatment • Enhanced A Normal Reduced

Differences in vegetation height and coverage as a result of treatment

Sarah Luke

Mean soil temperatures over 24 hours not different between treatment, but Reduced plots 0.4°C warmer than other plots in hottest time of the day

Mean soil temperatures over 24 hours not different between treatment, but Reduced plots 0.4°C warmer than other plots in hottest time of the day

Abundance of assassin bugs lower in reduced plots post-treatment

Andreas Dwi Jake Advento Stone

Stone et al (2024) Ecological solutions and evidence

Litter decomposition over 30 days

Andreas Dwi Advento

Adham Ashton-Butt

Lower levels of decomposition when vegetation removed

No clear change in yield between plot types, but yield negatively affected by higher rainfall 1-5 months before harvest

Normal understory

Alternative herbicide application

Understory vegetation management and its effects on ecosystems and productivity

Riau, Indonesia

Restoring riparian areas & oil palm replanting

Identifying the best ways to restore river margins in oil palm at the time of replanting

Riau, Indonesia

Experimental setup: Pre-treatment

Business-as-usual replanting & riparian management in GAR plantations

RERTA experimental treatments

enrichment

palms +

Enrichment only

Mature palms only

No restoration

Experimental setup: Post-treatment

Monitoring at three locations relative to buffers

Treatments change vegetation composition

Other trees

CAMBRIDGE

Maintaining riparian buffers mitigates crossday fluctuations in temperature

Afternoon

Buffer maintained

Morning

The shaded margin has lower temperature fluctuations between morning and afternoon.

No buffer (replanting to river)

Morning

Afternoon

The control margin has close to a 10°C range in the afternoon and a higher overall average temperature.

Buffers do not negatively affect ecosystem services in neighboring plantations

D

Treatment

Daniel Lim

Buffer treatments do not affect fertilisation of oil palm flowers (i.e., no negative effect on ecosystem services)

Alternative herbicide application

Understory vegetation management and its effects on ecosystems and productivity

Riau, Indonesia

Conservation within small reserves & replanting

Identifying the best ways to restore river margins in oil palm at the time of replanting

Riau, Indonesia

Comparing industrial and traditional management

Traditional African approaches to oil palm cultivation and effects on nature and society

Sinoe, Liberia

Field-based study
 with plots in and
 around six oil palm
 plantations in Sinoe
 County, Liberia

Rainforest: Natural habitat

Crinopseudoa kru: Named after the kru people in Sinoe County

Brogan Pett

Male specimen mm mm F 0.2 mm

Female specimen

Pett et al. (2024). Zootaxa

Oil palm cultivation changes biodiversity, and impacts differ between cultivation systems

Differences in community composition (relative abundance), visualised as ordinations derived from Bayesian species distribution models

Rainforest

Country
palm
Industrial
oil palm

Benedictus Freeman

Oil palm cultivation changes biodiversity, and impacts differ between cultivation systems

Latent variable 1

Latent variable 1

Rainforest

Country palm

Industrial oil palm

Alternative herbicide application

Understory vegetation management and its effects on ecosystems and productivity

Conservation within small reserves & replanting

Identifying the best ways to restore river margins in oil palm at the time of replanting

Riau, Indonesia

Comparing industrial and traditional management

Traditional African approaches to oil palm cultivation and effects on nature and society

Sinoe, Liberia

 Effective monitoring is required to understand how management affects biodiversity in oil palm

- Effective monitoring is required to understand how management affects biodiversity in oil palm
- BEFTA shows that industry-academic collaboration can lead to moresustainable oil palm management (proven using data-driven approaches)

 Most BEFTA research has occurred in Southeast Asia – potential for new socioecologically-valuable research in Central/South America

 Most BEFTA research has occurred in Southeast Asia – potential for new socioecologically-valuable research in Central/South America

Muchas gracias Terima kasih Kiitos paljon Thank you

