

Global Feedstock Assessment for SAF Production

Dr Douglas Phillips IATA

Introduction

- SAF estimated output of 2 million tonnes (Mt) in 2025 represents a mere 0.7% of total jet fuel consumption
- The annual production must increase exponentially to reach 500 Mt in 2050 to enable net zero CO₂ emissions
- A comprehensive, credible, and robust assessment of feedstocks that can be used to produce SAF is necessary to allocate prioritized support to the most promising areas and production pathways.

Research Methodology

Source: Worley Consulting, IATA Sustainability & Economics, 2025

Feedstock Assessment

- When assessing feedstock availability, there are three layers that consider existing biomass logistics infrastructure, geographical distribution, and specific policy drivers:
 - · Unconstrained feedstock availability,
 - Potential feedstock availability for bioenergy and biofuels,
 - Potential feedstock availability for SAF production.
- The production of Power to Liquid (PtL) fuels is reliant on a combination of captured CO₂ and hydrogen.

SAF Technology Overview

*The Methanol-to-Jet route is under ASTM evaluation.

Source: Worley Consulting, IATA Sustainability & Economics, 2025

Estimated Biomass Availability and projected SAF Volumes

Key SAF Technologies	Feedstock for Bioenergy & Biofuels	Feedstocks for SAF Production	Theoretical Maximum Bio-SAF	Core SAF forecast
Bio-SAF: Oil-based (HEFA)	189	82	63	63
Bio-SAF: Sugar and Starch crops (EtJ)	197	84	45	36
Bio-SAF: Agroforestry Residues (FT, EtJ)	3,097	1,171	176	108
Bio-SAF: MSW (FT)	717	240	38	29
e-SAF (FT, MtJ, EtJ)	-	-	-	176

Source: Worley Consulting, IATA Sustainability & Economics, 2025

Estimated global SAF production potential

South & Central America

- Projected availability of 1,700 Mt of unconstrained feedstock by 2030, rising to 2,100 Mt by 2050.
- The region could supply approximately 169 Mt of feedstock for SAF by 2030 and 217 Mt by 2050.
- In South and Central America, bio-SAF is expected to account for 70% of the region's estimated 60 Mt of SAF production by 2050, while e-SAF will account for the remainder.

Conclusions

- Biomass feedstock availability is substantial, however not all of it will be allocated to SAF production.
- Achieving 500 Mt of SAF will require both secure access to sustainable biomass feedstocks and an urgent and accelerated scaling-up of novel SAF technologies.
- This includes e-SAF which can help reach the targeted volumes, depending on the availability of low-cost renewable electricity, hydrogen, and CO₂.

MUCHAS GRACIAS

2025

